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1. Introduction 

Research shows that students suffer academically when they take a class that is 
taught by a teacher without the requisite qualifications to teach the class (Clotfelter, 
Ladd, & Vigdor, 2010; Dee & Cohodes, 2008; Goldhaber & Brewer, 2000; Raud-
enbush, Fotiu, & Cheong, 1999; Riordan, 2009). Unfortunately, almost every rigor-
ous, quantitative study to date has used outcomes based on national or international 
assessments (e.g., National Assessment of Educational Progress [NAEP], Trends in 
International Mathematics and Science Study [TIMSS]) that are not necessarily 
aligned with the curriculum the teachers taught in the class. Only one large-scale 
study exists that used detailed student and teacher data where the assessment data 
was linked to the class being taught (Clotfelter et al., 2010). Unfortunately, the study 
compared student academic growth for students of teachers who held subject-spe-
cific teaching licenses against those who held no teaching license.  

The lack of outcome measures that are directly aligned with the curriculum being 
taught leaves a clear gap in the extant literature – is teaching out-of-field harmful 
for students’ academic growth when the assessment is directly aligned with the cur-
riculum? As Porsch and Whannell (2019) recently argued, the field needs “a more 
sophisticated approach to defining out-of-field… and methodological techniques 
such as multilevel regression modeling on an appropriately sized dataset” (pg. 179). 
The present study meets this call.  This study involves a more sophisticated ap-
proach to defining out-of-field (i.e., state law) and involves multilevel, hierarchical 
linear modeling with data on millions of students to start filling this hole in the 
extant literature. 

Teaching out-of-field was essentially illegal in the United States between 2001 
and 2015. In 2001, the United States Congress passed the federal law No Child Left 
Behind Act of 2001 (NCLB) after which public schools in the US were required to 
assign teachers to classes only if the teacher held full state teaching certification and 
possessed solid content knowledge of the class’s subject. These so called highly 
qualified teachers were teaching within their field of expertise or teaching in-field. 
Highly qualified teachers in middle or secondary grade levels had to hold a bache-
lor’s degree or higher degree and pass rigorous subject-specific licensure tests in 
each academic subject the teacher taught (NCLB, Sec. 9101[23]). As of 2002, every 
new teacher hired had to be highly qualified, and by 2005-06 all teachers in core 
academic subjects had to meet this standard. NCLB prescribed a limited number of 
conditions in which a principal could assign a teacher to teach a core subject out-
of-field, and parents of students in these classes were required to be notified when 
a class was taught out-of-field. In response to this federal mandate, states developed 
specific rules to operationalize these mandates within each state’s educational con-
text.  

In Texas, the state education agency that oversees P-12 public schools and teach-
ers operationalized the state’s teacher licensure system by codifying the teaching 
licenses required to teach each course subject. Texas Administrative Code (TAC 
§231) contains 82 pages of licensure rules by subject area and grade level. For 
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example, to teach Chemistry in Grade 9 in-field, a teacher must hold a teaching 
license in either Chemistry, Science, Physical Science, or Math/Physical Sci-
ence/Engineering for a grade band (e.g., 7-12) that includes Grade 9. A teacher who 
holds a Physics, Biology, or English license would not be certified to teach Chem-
istry and would be teaching Chemistry out-of-field.  

This detailed licensure map is important because Texas teachers can hold multi-
ple teaching licenses. The initial license is generally awarded after the person com-
pletes a teacher preparation program and passes a subject-specific, grade banded 
content test and a pedagogical test. After this first teaching certification or license 
is awarded by the state, a teacher can train for and take additional licensure tests to 
demonstrate their expertise in dozens of other content areas and/or grade levels. For 
example, a teacher prepared and certified to teach Chemistry in Grades 7-12 could 
study Physics education and pass a Physics licensure test to earn a Physics teaching 
license in Grades 7-12. Or, a teacher certified to teach Mathematics in Grades 7-12 
can learn the Math content and requirements for middle grades and take a licensure 
test to teach Mathematics in Grades 4-8. Additional academic degrees are not re-
quired to gain additional licenses; expertise is demonstrated by passing a content-
specific licensure test. This decision to allow multiple licenses without relying on 
additional degrees or additional higher education enrollment is supported by re-
search that shows teaching courses within a secondary certification field results in 
similar levels of student academic achievement as teaching courses within the pri-
mary certification field (Sheppard, Padwa, Kelly, & Krakehl, 2020).  

In 2015, the United States Congress passed the Every Student Succeeds Act 
(ESSA) to replace NCLB. ESSA removed the highly qualified teaching requirement 
in order to give states and school district more local control. Now, federal laws es-
sentially permit schools to assign any teacher to any class regardless of the teacher’s 
qualifications or expertise for the subject area or grade level being taught. In other 
words, ESSA legalized teaching out-of-field. However, ESSA does require different 
student groups to be treated equitably. In other words, it is acceptable under ESSA 
to assign teachers to teach out-of-field as long as White students, Black students, 
and Latinx students (for just some examples) are equitably assigned to out-of-field 
classes (ESSA, Sec. 1111[g][1][B]). States are required to report to the federal gov-
ernment plans that ensure low-income students and students of color “are not served 
at disproportionate rates by ineffective, out-of-field, or inexperienced teachers” 
(Sec. 1111).  

Van Overschelde and Piatt (2020) showed this equitable assignment is clearly 
not happening. They found that Black students, male students, students from low-
income families, students in communities other than urban and suburban, and many 
other groups are significantly more likely to take classes that are taught out-of-field 
– relative to their White or Latinx, female, and wealthier peers. To determine 
whether this inequitable assignment of students to out-of-field classes is inequitably 
impacting students’ academic growth, detailed student-teacher-course-assessment-
licensure data for millions of students and tens of thousands of teachers from Texas 
were used.  
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The overarching question being examined are: Is teaching out-of-field bad for 
students academically when the material being tested is directly aligned with the 
material being taught? Are the federal ESSA mandates for student equity effective 
at ensuring an equitable education for all students?  

2. Literature Review 

When “teachers [are] assigned to teach subjects for which they have inadequate 
training and qualifications” (Ingersoll, 2019, p. 21), they are teaching out-of-field. 
Out-of-field is a characteristic of a class-teacher pairing or a description of the mis-
alignment of the teacher’s qualifications with the class taught (Sanders, Borko, & 
Lockard, 1993). Ingersoll (1999) captured this misassignment issue succinctly with 
an analogy. Ingersoll said that assigning a teacher to teach out-of-field is equivalent 
to requiring “cardiologists to deliver babies, real estate lawyers to defend criminal 
cases, chemical engineers to design bridges, or sociology professors to teach Eng-
lish” (pg. 34). A doctor licensed in cardiology but practicing obstetrics is not an 
unqualified doctor, but unqualified to deliver babies. Similarly, a teacher certified 
to teach English but teaching Algebra I is not an unqualified teacher, but unqualified 
to teach Algebra I.  

Therefore, a class is taught out-of-field or a teacher is assigned to teach a class 
out-of-field, but a teacher is not an out-of-field teacher. It is also true that a teacher 
can teach some classes in-field and other classes out-of-field in the same school year 
(Hashweh, 1987). Unpublished data from my lab show teachers can teach anywhere 
from 0% of their classes out-of-field to 100%, with every combination in between. 

In the USA, research shows this misalignment of teacher and class is largely the 
result of decisions made by the school principal (Carey & Farris, 1994; Ingersoll, 
1993; Ingersoll, 2002; Ingersoll, 2019). Ingersoll (2019; see also Ingersoll, 2002) 
argues that the misassignment is not due to a general lack of certified teachers, but 
more to an idiosyncratic lack of certified teachers willing to take a particular job at 
a particular school for the proffered salary. This makes intuitive sense. Imagine try-
ing to convince a teacher certified to teach Algebra II to move from their current 
urban or suburban locale to a rural locale where they know no one, usually with a 
concomitant lower salary. Principals are also operating within a limited budget so 
that, for example, when student enrollment results in one unstaffed English class, 
the principal must decide among a limited set of options: hire a certified teacher to 
cover that one class, hire a less-qualified substitute teacher, reassign a non-English 
teacher who has an open period, or redistribute the students from the unassigned 
class to the assigned English classes (and disrupt the master school schedule).  

Educational Equity 

Why should we care about teaching out-of-field? First and foremost, teaching 
out-of-field is bad for students for many reasons. To summarize, students taught 
out-of-field appear to experience less academic growth and lower academic 
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performance because teachers teaching out-of-field generally engage in less effec-
tive instructional practices (e.g., scaffolding, question asking, content elaboration, 
lower pedagogical content knowledge) and are less able to create classroom envi-
ronments that are conducive to student learning and academic growth.  

Student Academic Growth 

Students taught in out-of-field classes experience less academic growth and 
lower academic performance than students taught in-field (Chaney, 1995; Clot-
felter, Ladd, & Vigdor, 2010; Dee & Cohodes, 2008; Goldhaber & Brewer, 2000; 
Ingersoll, Perda, & May, forthcoming, as cited in Ingersoll, 2019; Raudenbush, Fo-
tiu, & Cheong, 1999; Riordan, 2009; Tsai & Young, 2015) because teachers cannot 
engage in more effective instructional practices (Blazar & Kraft, 2017; du Plessis, 
2015, 2016; Hobbs, 2013; Pianta & Hamre, 2009).  

Clotfelter et al. (2010) conducted one of the most rigorous quantitative studies 
to date to explore student achievement differences between students taught in-field 
and students taught by a person with no teaching license. Using rich, panel data 
from North Carolina, they computed value-added growth scores for high school 
students using scores from the state’s end-of-course exams. Aggregating results 
across multiple subject areas, they found that students experienced significantly 
higher academic growth when classes were taught in-field compared to when clas-
ses were taught by an unlicensed person, after controlling for a host of other varia-
bles. The magnitude of the relationship between teaching in-field (versus an unli-
censed person) and student academic growth was stronger than the competitiveness 
of the teacher’s undergraduate university, the years of teaching experience, whether 
the teacher held a graduate degree, the teacher’s scores on the state licensure exams, 
and even holding National Board Certification.  

Using a subset of student data from New York, Sheppard et al. (2020) found that 
aggregated school-level performance on the state’s chemistry and physics exams 
was higher in schools where more students were taught in-field compared to schools 
where more students were taught out-of-field, and performance was similar across 
initial certification field and secondary certification fields (i.e., certification by 
exam). These analyses were based on school-level performance therefore student-
level academic growth could not be evaluated directly. 

Using national test data or small sets of survey data, similar patterns of results 
have been obtained. For example, Ingersoll et al. (forthcoming, as cited in Ingersoll, 
2019) analyzed National Assessment of Educational Progress (NAEP) scores for 
Geography, History, Math, Reading, and Science and found significantly higher test 
scores on all tests when students were taught in-field compared to students taught 
out-of-field. Dee and Cohodes (2008) examined the National Education Longitudi-
nal Study of 1988 (NELS) dataset and found students in Grade 8 experienced higher 
test scores in Math and Social Studies when taught in-field, but no difference for 
English and Science. Using the NELS dataset, others have found positive benefits 
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of in-field teaching for Math and Science in secondary grades (Goldhaber & 
Brewer, 1997, 2000; Monk & King, 1994). The consistency of these findings is 
intriguing because the tests of academic achievement on which these studies were 
based were not necessarily aligned with the curriculum being taught in the year the 
tests were administered.  

The negative relationship between academic achievement and out-of-field teach-
ing has also been observed with younger students too. Riordan (2009) analyzed data 
for students enrolled in kindergarten through Grade 3 and found higher achieve-
ments in Math and Reading for students in classes taught in-field compared to out-
of-field.  

None of these studies is definitive in and of itself. However, collectively they do 
suggest a negative relationship between teaching out-of-field and student learning.  

Student Enrollment 

This finding that taking classes taught out-of-field hurts student learning is im-
portant because extensive evidence indicates that students are not equitably enrolled 
in out-of-field classes. Students from low-income families are more likely to take 
out-of-field classes than students from wealthier families, students of color are more 
likely to take classes out-of-field than White students, and students in rural commu-
nities are more likely to classes out-of-field than students in suburban communities 
(Ingersoll, 2008; Ingersoll & Gruber, 1996; Jerald & Ingersoll, 2002; Lankford, 
Loeb, & Wyckoff, 2002; Nixon et al., 2017; Seastrom et al., 2004; Van Overschelde 
& Piatt, 2020). This pattern of results obtains despite the fact that Ingersoll used 
self-reported survey data from the US Department of Education’s School and Staff-
ing Survey (SASS), Lankford et al. (2002) used statewide New York enrollment 
data, and Nixon et al. (2017) used a small samples of teachers from across several 
states. The most recent study of student enrollment in classes taught out-of-field 
was conducted by Van Overschelde and Piatt (2020) who examined detailed student 
data from Texas to examine student enrollment in out-of-field classes. They showed 
that Black students, male students, students from low-income families, student clas-
sified as English-language learners, and students receiving special education ser-
vices took significantly more classes out-of-field than their peers.  

3. Methodology 

This study was conducted to address many of the data limitations that have ex-
isted in prior studies on out-of-field teaching and to explore the relationship between 
out-of-field teaching and student academic outcomes using rich data and a rigorous 
multilevel mixed-effects methodology. The research questions explored are: 

1. Do students who are taught Algebra I in-field versus out-of-field experi-
ence similar levels of academic growth, after accounting for differences 
among students, teachers, and schools?  
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2. Do students who are taught Grade 8 Mathematics in-field versus out-of-
field experience similar levels of academic growth, after accounting for 
differences among students, teachers, and schools?  

3. Do students who are taught Grade 7 Mathematics in-field versus out-of-
field experience similar levels of academic growth, after accounting for 
differences among students, teachers, and schools?  

Data sources 

Texas is an ideal location for conducting research on teaching out-of-field be-
cause of the rich data collected by the state’s education agency and because it is the 
second largest state in the USA from the perspective of student enrollment in public 
education. Specifically, in 2019-20, 5.5 million students were enrolled in 8,900 
Texas public schools and these schools employed 363,000 teachers. Since 1991, all 
Texas public schools have been required to send detailed information about their 
students to the state. These student data include, for examples, enrollment and de-
mographics, courses taken and grades earned, educational services received (e.g., 
special education, gifted-talented, English language), standardized assessment 
scores, attendance, and discipline issues. The schools are also required to report 
detailed information on their teachers including courses taught (e.g., subject, grade 
level, days and times the classes meet), academic degrees held, salary, other non-
classroom assignments (e.g., instructional mentor, assistant principal). The state 
also collects teaching licenses held and licensure test performance.  

In 2007, the Texas Legislature authorized the creation of the largest research-
only state longitudinal data system in the USA. Three Education Research Center 
(ERC) exist and each houses a copy of much of the state’s education data as well as 
employment data collected by the state’s workforce agency (described in detail be-
low). To protect the confidentiality of individuals, personally identifiable data (e.g., 
names, date of birth) are removed so no individual person can be identified. How-
ever, to facilitate research studies and evaluations, each person is assigned two 
unique IDs to enable each person to be longitudinally tracked across decades. The-
oretically, a person can be tracked from entry into elementary school through retire-
ment if the person lived exclusively in Texas. The ERC data can be accessed only 
after receiving authorization from the ERC Advisory Board and only through secure 
research facilities from within one of the three higher education institutions in Texas 
that houses an ERC. To conduct the studies described here, I received permission 
from the ERC Advisory Board to access the confidential data through the University 
of Houston’s ERC. 

Data preparation  

Determining whether the millions of students taught by tens of thousands of 
teachers were taught in-field versus out-of-field required extensive data preparation. 
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I start with an overview of the preparation process before providing the details. 
Summary: Every student who completed Algebra I, Grade 8 Mathematics, and 
Grade 7 Mathematics between the fall of 2012 and the summer of 2019 was selected 
from the state’s master dataset and the teacher of record was identified (when 
known). I then determined whether each teacher held the state-required teaching 
license to teach the course.  

The details follow. The state’s master dataset contains a list of every unique com-
bination of student, school year, school, course, course sequence (e.g., fall, spring), 
and service code (i.e., subject taught). Hereafter, the term course will be used as a 
shorthand to indicate a unique school year-school-course-sequence-service record. 
The master Student-Course dataset for secondary students contains almost 235 mil-
lion records. From this master dataset, only records for Algebra I, Grade 8 Mathe-
matics, and Grade 7 Mathematics were selected; this resulted in 14.6 million course 
records. Student demographic data including gender, ethnicity, economic disadvan-
taged status, English language learner status, and special education status were 
added.  

The teacher or teachers of record for each course was identified if that infor-
mation was reported to the state. Only courses with a single teacher were retained; 
this reduced the sample to 13.2 million records.  

Out-of-field was determined at the student-course level by comparing all valid 
teaching licenses held by the teacher of record against each student’s grade-level, 
the course being taught, and the state’s licensure requirements for teaching that 
course. Current state educator licenses are valid for either one year (probation-
ary/emergency) or five years (standard), and older licenses were issued for the ed-
ucator’s lifetime. Therefore, a license was considered valid if the effective date of 
the license was before the teacher’s assignment start date for the course. Years of 
teaching experience and academic degree held at the time the course was taught 
were then added. 

The outcome measure used for RQ1 was the normalized (z-score transformed) 
score for the state’s Algebra I end-of-course (EOC) exam, for RQ2 was the normal-
ized score for the state’s Grade 8 Mathematics exam, and for RQ3 was the normal-
ized score for the state’s Grade 7 Mathematics exam. The Algebra I exam is admin-
istered to students who enrolled in Algebra I and it is a high stakes exam; students 
must pass the exam to graduate from high school. As a result of the graduation 
requirement, students are permitted to take the exam multiple times. Only the first 
attempt at the EOC was used. The Grade 7 and 8 Mathematics exams are taken 
during the spring semester of that school year. Grade 8 Mathematics is higher stakes 
than Grade 7 because students are “required” to pass the Grade 8 Mathematics exam 
to be promoted to Grade 9. Three attempts at the Grade 8 exam are offered, and the 
only the first attempt was included here.  

The student’s prior year’s normalized Mathematics exam score was used in sev-
eral analyses as a pretest covariate. As Algebra I can be taken in different grades, 
only students who took it in Grades 8 or 9 were examined because 93% of Algebra 
I students took the course in one of those two grades. For students who took Algebra 
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I in Grade 8, the Grade 7 Mathematics exam was the pretest used and for students 
who took it in Grade 9, the Grade 8 Mathematics exam was the pretest used. 

Finally, because multiple course records can exist for a student during a school 
year (e.g., fall and spring semesters), only the last record for the spring semester 
were retained. This last step reduced the size of the final dataset to 5 million unique 
students who took either Algebra I, Grade 8 Mathematics, or Grade 7 Mathematics 
between spring 2013 and spring 2019, who were taught by a single teacher, who 
had complete demographic and prior math performance data, and who were taught 
by teachers who had complete data.   

The demographic information for students in each of the final datasets is show 
in Table 1. The Algebra I sample included almost 1.8 million students taught by 
20,554 teachers employed by 3,820 schools. The Grade 8 Mathematics sample in-
cluded over 1.4 million students taught by 14,971 teachers employed by 2,495 
schools, and the Grade 7 Mathematics sample included just under 1.8 million stu-
dents taught by 16,966 teachers employed by 2,556 schools.  

Analytic design 

Three different sets of three-level, hierarchical, mixed effects regression models 
were estimated with students at Level 1, teachers at Level 2, and schools at Level 
3, with each aligned to a corresponding research question. The datasets were con-
structed so that the lower-level units were strictly nested within the next higher-
level units. Stata v16.1 mixed procedure was used. Given the large number of clus-
ters, full maximum likelihood estimation was justified (Snijders & Bosker, 2012).  
The sample size was more than sufficient for producing unbiased regression coeffi-
cients and variance components (Lee & Hong, 2021). Covariance structure of the 
random effects was treated as independent. The outcome measures were screened 
for outliers. The extreme values at both ends of the distribution of the test scores 
were earned by hundreds of students and were, therefore, treated as not outliers. All 
dummy codes were coded as 1 = Yes. 

Unconditional (null) models without any predictors were estimated for each out-
come variable to test for systematic within- and between-teacher and -school vari-
ance in outcome scores (Raudenbush & Bryk, 2002). Intraclass correlations (ICC) 
were then computed, one for each of the three outcome measures by dividing the 
variance at each level by the sum of the variances at all three levels.  

For Model 1, student-level predictors known to be correlated with student enroll-
ment in classes taught out-of-field (Van Overschelde & Piatt, 2020). These varia-
bles included normalized prior year’s Math score, Female status, ethnicity dummy 
codes for Asian, Black, Other, and White with Latinx as the largest and excluded 
reference group, and dummy codes for economically disadvantage status, English 
language learner status, and special education status. Also included were dummy 
codes for the different school years with 2012-13 as the excluded reference group. 
Because the test used for the prior score would vary substantially between students 
who took Algebra I in Grade 9 (Grade 8 Mathematics is the prior) and students who 
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took Algebra I in Grade 8 (Grade 7 Mathematics is the prior), a Grade 9 variable 
was also added. The variable had a value of 1 if Algebra I was taken in Grade 9 and 
0 if it was taken in Grade 8. 

For Model 2, teacher-level, fixed- and random-effect predictors were added. The 
random-effect variable was a dummy code indicating whether the teacher was 
teaching the course out-of-field. The teaching out-of-field variable was treated as 
random after all three likelihood-ratio tests showed these models significantly im-
proved model quality compared to the models with teaching out-of-field treated as 
a fixed effect. The fixed-effect variables were teaching experience and dummy 
codes for the academic degree held with the bachelor’s degree as the largest and 
excluded reference group. 

For Model 3, school-level fixed-effect dummy codes for the school’s locale (e.g., 
urban, suburban, rural; see Texas Education Agency, 2019) were added with Sub-
urban as the largest and excluded reference group. 

4. Findings  

A basic summary of the findings is: students who were taught out-of-field expe-
rience significantly and substantially less academic growth in Algebra I, Grade 8 
Mathematics, and Grade 7 Mathematics then their peers who were taught in-field 
after accounting for important differences among students, teachers, and schools.  
The student taught out-of-field are losing ground academically relative to their peers 
taught in-field. The details of the different models are described next. 

For Algebra I, the ICC indicates that 40.6% of the variance in scores was at the 
school level (among schools), 11.3% was at the teacher level (among teachers 
within a school), and the remaining 48.1% was at the student level (among students 
within a teacher’s classrooms). The variance at all three levels was significant. For 
Grade 8 Mathematics, the ICC indicates that 12.5% of the variance in scores was at 
the school level, 18.7% was at the teacher level, and the remaining 68.8% was at 
the student level. For Grade 7 Mathematics, the ICC indicates that 12.5% of the 
variance in scores was at the school level, 19.8% was at the teacher level, and the 
remaining 67.7% was at the student level. These results indicate the necessity for 
using a multilevel statistical modeling approach to answer all three research ques-
tions (Snijders & Bosker, 2012). The large amount of school-level variance for Al-
gebra I and the substantially smaller amount of school-level variance for the other 
two outcomes is interesting and may reflect the fact that students who take Algebra 
I in Grade 8 are often in different schools (e.g., middle grade schools) compared to 
students who take Algebra I in Grade 9 (e.g., high schools). This explanation is 
explored analytically below. 

Algebra I 

The modeling results for Algebra I are shown in Table 2. First, every student-
level variable in Model 1 was significant thereby supporting their inclusion in 
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subsequent models. The likelihood-ratio (LR) test indicates a significant improve-
ment in the model fit between the unconditional model and Model 1 (χ2 = 971733.0, 
p < 0.0001).  

The differences in variance components across the two models are dramatic. The 
null model shows that 39.7% of the variance in test scores was at the school-level, 
that is among schools, and Model 1 showed only 4.4% of the variance remained at 
the school-level after adding the student-level fixed effect variables. The percentage 
of variance explained (PVE) was computed by computing the difference between 
the school-level variance of Model 1 and the null model and dividing the difference 
by the school-level variance of the null model. The PVE was 88.9%; this is the 
percentage of school-level variance explained by adding the student-level fixed ef-
fects. To determine the degree to which the PVE result was due solely to Grade 8 
students being enrolled in different schools from Grade 9 students, Model 1 was 
rerun without the Grade9 variable. The LR test result shows that including the 
Grade9 variable substantially improves model fit over the model without it (χ2 = 
1187.7, p < 0.0001), but the difference in PVE between the null model and Model 
1 with versus without Grade9 showed a 5.9 percentage point difference. The vast 
majority of the variance explained in Model 1 came from student demographic char-
acteristics thereby strongly implying systematic sorting of students to schools with 
higher scoring students enrolling in different schools than lower scoring students. 

Research Question 1 asks whether students taught Algebra I out-of-field experi-
ence similar levels of academic growth as students taught in-field, as reflected in 
their Algebra I EOC exam scores and controlling for their Mathematics performance 
the prior year. The results for Model 2, which included all of the variables in Model 
1 plus a random-effect variable for teaching out-of-field and teacher-level fixed ef-
fect variables for teaching experience and academic degree held, show that teaching 
out-of-field reduces student academic growth in Algebra I significantly (Z = -17.61, 
p < 0.0001), with test scores reduced by 11.1% of a standard deviation after ac-
counting for the student-level variables. The LR test indicates a significant improve-
ment in model fit between Model 1 and Model 2 (χ2 = 1264.9, p < 0.0001). After 
accounting for the student- and teacher-level variables, only 3.7% of the variance is 
left at the teacher level.  

The results of Model 3, which included Model 2’s variables plus dummy codes 
for each school’s locale (e.g., urban, suburban, rural), shows that teaching out-of-
field was still highly significant (Z = -16.40, p < 0.0001) with teaching out-of-field 
associated with a reduction in scores equivalent to 10.4% of a standard deviation. 
LR test shows Model 3 resulted in a significant improvement in model fit over 
Model 2 (χ2 = 126.5, p < 0.0001). The PVE result for school-level variance com-
paring Model 2 and Model 3 shows only a 3.0% reduction in variance, further 
strengthening the argument that students are sorted into different schools and the 
rural/urban/suburban nature of the school is not the primary reason for this sorting. 
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Grade 8 Mathematics 

The modeling results are shown in Table 3. First, consistent with the Algebra I 
results, the student-level variables in Model 1 were all significant. The likelihood-
ratio (LR) test indicates a significant improvement in the model fit between the un-
conditional model and Model 1 (χ2 = 899601.5, p < 0.0001). The school-level vari-
ance component was dramatically reduced again (PVE=82.1%) from the null model 
to Model 1 with the addition of the student-level fixed effects. The PVE for the 
teacher-level variance was reduced 74.8%. 

Research Question 2 is about whether students taught Grade 8 Mathematics out-
of-field experience similar levels of academic growth as students taught in-field, as 
reflected in their Mathematics exam scores. The results for Model 2, which included 
all of the variables in Model 1 plus a teaching out-of-field variable, show that teach-
ing out-of-field reduces student academic growth in Grade 8 Mathematics signifi-
cantly (Z = -20.78, p < 0.0001), with test scores reduced by 15.1% of a standard 
deviation after accounting for the student-level variables that are correlated with test 
performance. The LR test indicates a significant improvement in the model fit be-
tween Model 1 and Model 2 simply by adding the teaching out-of-field variable (χ2 
= 937.5, p < 0.0001). After accounting for the student characteristics and teaching 
out-of-field, only 3.8% of the variance is left at the teacher level. The PVE between 
Model 1 and Model 2 for the variance at the teacher level showed it was reduced 
8.1%. 

The results of Model 3, which included Model 2’s variables plus dummy codes 
for each school’s locale (e.g., urban, suburban, rural), shows that teaching out-of-
field was still highly significant (Z = -20.36, p < 0.0001) with teaching out-of-field 
associated with a reduction in scores equivalent to 14.9% of a standard deviation. 
LR test shows Model 3 resulted in a significant improvement in model fit over 
Model 2 (χ2 = 44.7, p < 0.0001), but the PVE at the school level was only 0.6%. 

Grade 7 Mathematics 

The modeling results are shown in Table 4. First, the student-level variables in 
Model 1 were all significant thereby supporting their inclusion in subsequent mod-
els. The likelihood-ratio (LR) test indicates a significant improvement in the model 
fit between the unconditional model and Model 1 (χ2 = 1614744.9, p < 0.0001). the 
PVE results shows the variance was reduced 88.4% at the school level and 87.6% 
at the teacher level.  

Research Question 3 is about whether students taught Grade 7 Mathematics out-
of-field experience similar levels of academic growth as students taught in-field, as 
reflected in their Mathematics exam scores. The results for Model 2, which included 
all of the variables in Model 1 plus a teaching out-of-field variable, show that teach-
ing out-of-field reduces student academic growth in Grade 7 Mathematics signifi-
cantly (Z = -9.64, p < 0.0001), with test scores reduced by 4.5% of a standard devi-
ation after accounting for the student-level variables that are correlated with test 
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performance. The LR test indicates a significant improvement in the model fit be-
tween Model 1 and Model 2 simply by adding the teaching out-of-field variable (χ2 
= 587.1, p < 0.0001). After accounting for the student characteristics, teaching out-
of-field and teacher variables, only 2.3% of the variance is left at the teacher level. 

The results of Model 3, which included Model 2’s variables plus dummy codes 
for each school’s locale (e.g., urban, suburban, rural), shows that teaching out-of-
field was still significant (Z = -10.74, p < 0.0001) with teaching out-of-field associ-
ated with a reduction in scores equivalent to 5.1% of a standard deviation. LR test 
shows Model 3 resulted in a significant improvement in model fit over Model 2 (χ2 
= 44.7, p < 0.0001), but the PVE at the school level was only 0.6%. 

5. Discussion 

Using detailed, student-level enrollment and assessment data for 5 million 
unique students from Texas who completed Algebra I, Grade 8 Mathematics, or 
Grade 7 Mathematics between 2013 and 2019 and rigorous hierarchical linear mod-
eling, the present study shows that students who took their Mathematics classes 
taught out-of-field experienced significantly and substantially less academic growth 
than their peers who took the same course taught in-field.  

For Algebra I, students who took the course taught out-of-field earned Algebra I 
end-of-course (EOC) exam scores that were 11% of a standard deviation below their 
peers taught in-field. To put this finding into perspective, the magnitude of the neg-
ative relationship between teaching out-of-field and Algebra I test scores is 285% 
larger than the negative relationship between economic disadvantaged status and 
those test scores. In other words, putting a teacher certified to teach Algebra I into 
Algebra I classrooms would have almost three times the positive effect on Algebra 
I EOC scores as lifting students out of poverty. This pattern exists even after ac-
counting for important differences among students, teachers, and schools. 

For Grade 8 Mathematics, students who took the course taught out-of-field 
earned exam scores that were 15% of a standard deviation below their peers taught 
in-field. For Grade 7 Mathematics, students who took the course taught out-of-field 
earned exam scores that were 5% of a standard deviation below their peers taught 
in-field. These three results are important for a number of reasons.  

First and foremost, students who are taught Algebra I, Grade 8 Mathematics, and 
Grade 7 Mathematics out-of-field experience less academic growth and therefore, 
are losing ground academically relative to their peers who are taught in-field. The 
pattern of results was consistent across all three courses. This finding is similar to 
several other studies (e.g., Clotfelter et al., 2010; Ingersoll, 2019; Tasi & Young, 
2015), but the present results advance the field because this study combined four 
important characteristics.  First, this study involves a direct comparison of statewide 
standardized exam scores between students taught in-field versus out-of-field. Sec-
ond, the content covered by the exams are directly linked to the curriculum being 
taught in the course taught in-field or out-of-field. Third, the results are based on 
1.4 to 1.8 million students in each course. Finally, the results are based on rigorous 
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hierarchical linear modeling that address the nested structure of the data (students 
taught by teachers, teachers employed by schools). Clotfelter et al. (2010) came to 
a similar conclusion using detailed student-level data from North Carolina and com-
paring outcomes for students taught in-field against students taught by uncertified 
teachers. Tsai and Young (2015) came to a similar conclusion using international 
TIMSS results in science even though there was no guarantee that the science cur-
riculum being taught was aligned directly with the exam’s content. Ingersoll (2019) 
drew a similar conclusion using NAEP scores, and this same curricular alignment 
issue exists with this test. 

Second, Van Overschelde and Piatt (2020) recently showed that students are not 
equitably enrolled in classes taught out-of-field and the inequity is growing with 
each passing school year since the US Congress legalized teaching out-of-field in 
2015. Specifically, they found that Black students, male students, low-income stu-
dents, students who are not native English speakers, students receiving special ed-
ucation services, and students in most locales except urban and suburban were sig-
nificantly more likely to take classes taught out-of-field than their peers. Given the 
present study’s findings, the groups of students who are taking more classes taught 
out-of-field are essentially receiving an inferior education – these student groups 
are losing ground academically relative to their White, Female, Suburban, native-
English speaking, and wealthier peers.  

Third, the negative relationship between teaching out-of-field and exam scores 
is larger in magnitude that factors like poverty and race. Given that the cost of en-
suring all teachers are teaching in-field would be much lower than addressing stu-
dent poverty, a federal or state policy that requires all teachers to teach in-field 
would dramatically improve students’ learning and increase their subsequent test 
performance. Principals who have hiring authority over their teachers could work 
to ensure, to the greatest degree practicable, that all teachers are teaching in-field. 
This is easier said than done as principals attempt to balance budgets and teacher 
workloads, but larger school districts could maintain a reserve pool of teachers who 
can teach a class or two in each of several different schools. Any scheme to address 
the negative impacts of teaching out-of-field is likely to have a financial cost, but 
the cost of not addressing the issue is arguably much larger. 

Fourth, the results strongly suggest that policymakers need to address the alloca-
tion of teachers in particular subject areas so as to create an equitable education 
system for all student groups. For example, the government could incentivize teach-
ers to move to rural communities, like they have done to get teachers to teach in 
urban communities.  

Finally, the present research shows the importance of having state longitudinal 
data systems (SLDS) available for researcher and for evaluating large-scale, policy-
relevant educational issues. Only be collecting longitudinal data at the student-, 
teacher-, school-, and school district-levels is this type of research possible. An 
SLDS with researchers access is an important policy issue that other countries may 
want to consider when addressing teaching out-of-field and its impacts on students 
and teachers. 
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6. Conclusion 

The legalization of teaching out-of-field since the passage of the federal Every 
Student Succeeds Act (2015) is negatively impacting students’ academic growth 
and the impact is not equitable. Black students, male students, and low-income stu-
dents are much more likely to take classes taught out-of-field (Van Overschelde & 
Piatt, 2020) and  

Teaching out-of-field is an issue of equity. out-of-field teaching is bad for stu-
dents. Out-of-field teaching reflects a lack of equity in the way students are edu-
cated. The removal of the federal mandates to ensure each class was taught by a 
highly-qualified teacher has resulted in a dramatic increase in the number of courses 
taught out-of-field and this change negatively impacts students of color, male stu-
dents, and students in low-income families and communities. The value lost for 
these student groups and for society by the legalization of teaching out-of-field is 
substantial.  

Much research has been conducted to understand the cause of teaching out-of-
field.  Research on why principals assign teachers to teach classes out-of-field indi-
cates two primary reasons for this decision: 1) to save money (e.g., Bush, 2003; du 
Plessis, 2014; 2017; Ingersoll, 2002; Shepherd, 2013), and 2) because of a lack of 
sufficiently qualified teachers willing to fill a particular school’s job opening (e.g., 
Ee-gyeong, 2011; du Plessis & Sunde, 2017; Ingersoll, 1998; Ingersoll, 2002; Inger-
soll & Curran, 2004; Ingersoll et al., 2004; Jimerson, 2003; Nixon et al., 2017; 
Sharplin, 2014; Zhou, 2014).  

With these reasons in mind, let us return to Ingersoll’s analogy of cardiologists 
being assigned to deliver babies. Imagine a hospital administrator assigns cardiolo-
gists to deliver babies in order to either 1) save the hospital money, or 2) because 
an insufficient number of obstetricians are available. Would state and federal poli-
cymakers and we, as a society, treat this administrator’s decision as prudent or eth-
ical? Now, imagine that the hospital administrator makes the decision to assign ob-
stetricians to deliver most of the White babies and cardiologists to deliver most of 
the babies of color? Would we believe this administrator’s decision was ethical? I 
believe rational people would say that the administrator was acting unethically, and 
they might argue that the person should be arrested.  

By legalizing teaching out-of-field, ESSA has resulted in the unethical and ineq-
uitable treatment of some student groups. The present findings show that the current 
education system in Texas violates the educational equity requirements in federal 
education policy for a “fair, equitable, and high-quality education” (ESSA, Sec. 
1001) and the state’s own education code (Texas Education Code, Sec 1.002) re-
quirement for “equal educational services or opportunities.”  
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Table 1. Student demographic characteristics 

Variable Algebra I 
Grade 8  

Mathematics 
Grade 7  

Mathematics 
Students 1,793,206 1,407,246 1,762,344 

Teachers      20,554      14,971      16,966 
Schools        3,820        2,495        2,556 

Gender    
 Female    900,385    691,015    876,792 
 Male    892,821    716,231    885,552 

Ethnicity/Race    
 Asian      65,207      25,897      58,657 
 Black/ 

     African American 
   223,440    193,318    218,584 

 Hispanic/Latinx    935,939    784,820    949,989 
 Other      41,638      31,033      41,033 
 White    526,982    372,158    494,081 

Economic  
Disadvantaged 

   

 No    791,072    513,671    695,875 
 Yes 1,002,134    893,575 1,066,469 

English  
Language Learner 

   

 No 1,563,766 1,158,497 1,416,568 
 Yes    229,440    248,749    345,776 

Special Education     
 No 1,716,908 1,325,618 1,672,870 
 Yes      76,298      81,628      89,474 

Grade Level    
 Grade 8    422,860   
 Grade 9 1,370,346   

 



Table 2. Model coefficients for Algebra I End-of-Course Exam 
 Null Model Model 1 Model 2 Model 3 
 Coefficient (SE) Coefficient (SE) Coefficient (SE) Coefficient (SE) 
Level 1 (student)     
  Intercept 0.135 (0.011) -0.085 (0.005)  0.079 (0.005)  0.130 (0.005) 
     Female   0.053 (0.001)  0.053 (0.001)  0.053 (0.001) 
     Asian   0.191 (0.002)  0.191 (0.004)  0.191 (0.004) 
     Black  -0.024 (0.001) -0.024 (0.002) -0.024 (0.002) 
     Other   0.019 (0.003)  0.019 (0.003)  0.019 (0.003) 
     White   0.013 (0.001)  0.013 (0.001)  0.013 (0.001) 
     ELL  -0.051 (0.001) -0.051 (0.001) -0.051 (0.001) 
     SpEd  -0.170 (0.002) -0.166 (0.002) -0.166 (0.002) 
     EcoDis  -0.039 (0.001) -0.039 (0.001) -0.039 (0.001) 
     Prior Score   0.552 (0.001)  0.552 (0.001)  0.552 (0.001) 
     Grade 9  -0.180 (0.005) -0.179 (0.005) -0.177 (0.005) 
     SYear 2014  -0.020 (0.002) -0.023 (0.002) -0.023 (0.002) 
     SYear 2015  -0.012 (0.002) -0.017 (0.002) -0.017 (0.002) 
     SYear 2016  -0.006 (0.002) -0.013 (0.002) -0.013 (0.002) 
     SYear 2017   0.082 (0.002)  0.072 (0.002)  0.073 (0.002) 
     SYear 2018  -0.009 (0.002) -0.002 (0.002) -0.002 (0.002) 
     SYear 2019  -0.004 (0.002) -0.010 (0.003) -0.010 (0.003) 
Level 2 (teacher)     
     TOOF (random)   -0.111 (0.006) -0.104 (0.006) 
     Teaching Experience    0.003 (0.000)  0.003 (0.000) 
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     No Degree   -0.026 (0.007) -0.025 (0.010) 
     Masters   -0.005 (0.003) -0.004 (0.003) 
     Doctorate   -0.086 (0.018) -0.085 (0.018) 
Level 3 (school)     
     Urban    -0.015 (0.014) 
     Central    -0.029 (0.013) 
     Central Suburban    -0.090 (0.012) 
     Independent    -0.084 (0.017) 
     Fast Growing    -0.062 (0.017) 
     Stable    -0.080 (0.013) 
     Rural    -0.068 (0.013) 
     Charter    -0.116 (0.015) 
Level 1 variance (student) 0.470 (0.000) 0.275 (0.002) 0.275 (0.000) 0.275 (0.000) 
Level 2 variance (teacher)  0.111 (0.002) 0.040 (0.001) 0.037 (0.001) 0.037 (0.001) 
     TOOF   0.025 (0.002) 0.025 (0.002) 
Level 3 variance (school) 0.397 (0.011) 0.044 (0.002) 0.042 (0.002) 0.041 (0.001) 
χ2 for model improvement  971733.0 1264.9 126.5 

 
Note: SpEd = special education, ELL = English language learner, EcoDis = Economically disadvantaged, SYear = school year where the digits 
represent the year of the spring semester (e.g., SYear2017 = school year 2016-2017), #p > 0.10, *p < 0.10, ***p < 0.01.  If coefficient not marked, 
then p < 0.0001. 
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Table 3. Model coefficients for Grade 8 Mathematics 

 Null Model Model 1 Model 2 Model 3 
 Coefficient (SE) Coefficient (SE) Coefficient (SE) Coefficient (SE) 
Level 1 (student)     
  Intercept -0.278 (0.008) 0.070 (0.004)  0.073 (0.005)  0.092 (0.008) 
     Female   0.065 (0.001)  0.065 (0.001)  0.065 (0.001) 
     Asian   0.174 (0.004)  0.174 (0.004)  0.174 (0.004) 
     Black  -0.046 (0.002) -0.046 (0.002) -0.046 (0.002) 
     Other   0.016 (0.003)  0.016 (0.003)  0.016 (0.003) 
     White   0.014 (0.001)  0.014 (0.001)  0.014 (0.001) 
     ELL  -0.045 (0.001) -0.045 (0.001) -0.045 (0.001) 
     SpEd  -0.241 (0.002) -0.237 (0.002) -0.237 (0.002) 
     EcoDis  -0.043 (0.001) -0.043 (0.001) -0.043 (0.001) 
     Prior Score   0.756 (0.001)  0.756 (0.001)  0.756 (0.001) 
     SYear 2014  -0.080 (0.002) -0.083 (0.002) -0.083 (0.002) 
     SYear 2015  -0.055 (0.002) -0.062 (0.002) -0.061 (0.002) 
     SYear 2016  -0.051 (0.002) -0.060 (0.002) -0.059 (0.002) 
     SYear 2017   0.053 (0.002)  0.041 (0.002)  0.041 (0.002) 
     SYear 2018  -0.023 (0.002) -0.036 (0.002) -0.036 (0.002) 
     SYear 2019  -0.037 (0.003) -0.053 (0.003) -0.054 (0.003) 
Level 2 (teacher)     
     TOOF (random)   -0.151 (0.009) -0.149 (0.009) 
     Teaching Experience    0.003 (0.000)  0.003 (0.000) 
     No Degree   -0.085 (0.010) -0.084 (0.010) 
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     Masters   -0.006 (0.004) -0.006 (0.004) 
     Doctorate   -0.001 (0.022) -0.000 (0.022) 
Level 3 (school)     
     Urban    -0.021 (0.012) 
     Central    -0.046 (0.012) 
     Central Suburban    -0.012 (0.012) 
     Independent    -0.051 (0.017) 
     Fast Growing    -0.015 (0.018) 
     Stable    -0.015 (0.013) 
     Rural    -0.027 (0.011) 
     Charter    -0.033 (0.014) 
Level 1 variance (student) 0.606 (0.001)  0.322 (0.000) 0.322 (0.000) 0.275 (0.000) 
Level 2 variance (teacher)  0.165 (0.003)  0.041 (0.001) 0.038 (0.001) 0.037 (0.001) 
     TOOF   0.026 (0.003) 0.025 (0.002) 
Level 3 variance (school) 0.111 (0.005)  0.020 (0.000) 0.019 (0.001) 0.041 (0.001) 
χ2 for model improvement  899601.5 1160.95 126.5 

 
Note: SpEd = special education, ELL = English language learner, EcoDis = Economically disadvantaged, SYear = school year where the digits 
represent the year of the spring semester (e.g., SYear2017 = school year 2016-2017), #p > 0.10, *p < 0.10, ***p < 0.01.  If coefficient not marked, 
then p < 0.0001. 
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Table 4. Model coefficients for Grade 7 Mathematics 

 Null Model Model 1 Model 2 Model 3 
 Coefficient (SE) Coefficient (SE) Coefficient (SE) Coefficient (SE) 
Level 1 (student)     
  Intercept -0.169 (0.008) 0.052 (0.003) 0.046 (0.003) 0.047 (0.007) 
  Predictors     
     Female   0.031 (0.001)  0.031 (0.001)  0.031 (0.001) 
     Asian   0.198 (0.002)  0.198 (0.002)  0.198 (0.002) 
     Black  -0.063 (0.001) -0.063 (0.001) -0.063 (0.001) 
     Other   0.016 (0.003)  0.016 (0.003)  0.016 (0.003) 
     White   0.026 (0.001)  0.026 (0.001)  0.026 (0.001) 
     ELL  -0.053 (0.001) -0.053 (0.001) -0.053 (0.001) 
     SpEd  -0.154 (0.002) -0.153 (0.002) -0.152 (0.002) 
     EcoDis  -0.063 (0.001) -0.063 (0.001) -0.063 (0.001) 
     Prior Score   0.775 (0.001)  0.775 (0.001)  0.775 (0.001) 
     SYear 2014  -0.014 (0.002) -0.016 (0.002) -0.017 (0.002) 
     SYear 2015  -0.006 (0.002) -0.011 (0.002) -0.011 (0.002) 
     SYear 2016   0.003 (0.002)  0.004 (0.002)  0.005 (0.002) 
     SYear 2017   0.079 (0.002)  0.070 (0.002)  0.069 (0.002) 
     SYear 2018   0.049 (0.002)  0.038 (0.002)  0.037 (0.002) 
     SYear 2019   0.059 (0.002)  0.046 (0.002)  0.044 (0.002) 
Level 2 (teacher)     
     TOOF (random)   -0.045 (0.005) -0.051 (0.005) 
     Teaching Experience   0.003 (0.000) 0.003 (0.000) 
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     No Degree   -0.033 (0.007) -0.033 (0.007) 
     Masters   -0.002 (0.003) -0.002 (0.003) 
     Doctorate   -0.026 (0.020) -0.030 (0.020) 
Level 3 (school)     
     Urban    -0.025 (0.010) 
     Central    -0.033 (0.010) 
     Central Suburban    -0.002 (0.010) 
     Independent    -0.011 (0.015) 
     Fast Growing    -0.013 (0.015) 
     Stable    -0.012 (0.011) 
     Rural    -0.007 (0.009) 
     Charter    -0.069 (0.010) 
Level 1 variance (student) 0.663 (0.001) 0.268 (0.001) 0.268 (0.001) 0.268 (0.001) 
Level 2 variance (teacher)  0.194 (0.003) 0.023 (0.000) 0.023 (0.000) 0.023 (0.000) 
     TOOF   0.012 (0.001) 0.012 (0.001) 
Level 3 variance (school) 0.122 (0.005) 0.014 (0.000) 0.014 (0.000) 0.014 (0.000) 
χ2 for model improvement  1614744.9 587.1 103.9 

Note: The predictor variables are fixed effects, except where noted. TOOF = Teaching out-of-field, SpEd = special education, ELL = English 
language learner, EcoDis = Economically disadvantaged, SYear = school year where the digits represent the year of the spring semester (e.g., 
SYear2017 = school year 2016-2017), #p > 0.10, @p < 0.10, *p < 0.05,**p < 0.01, ***p < 0.001.  If coefficient not marked, then p < 0.0001. 
 
 


