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Temporal trends in water clarity and land-use/land-cover (LULC), as well as the
relationship between changes in water clarity and LULC, were analyzed using water
clarity values extracted from Landsat images from 1986 to 2008, acquired for east-
central Maine. Of 40 lakes identified using satellite imagery, our analysis found one
lake with a significant decrease in water clarity. In a second data-set, with 99 lakes,
we identified two lakes with a significant increase in water clarity. Analyses of the
relationship between temporal changes in the water clarity and LULC did not iden-
tify any clear, consistent, relationships between changes in the water quality vari-
ables and LULC. Overall, the results of this study aid in the identification of the
relationship between water clarity and LULC, and identify temporal changes in
water clarity. The findings of this study support the previous research that demon-
strates the ability of satellite imagery to be used in assessments of water clarity, thus
enabling evaluation at broader spatial scales and longer temporal scales than assess-
ments that rely solely on ground-based data.
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Introduction

Freshwater lakes support both diverse biological communities (Bronmark & Hansson,
2005) and are a valuable resource for humans as they provide recreational opportuni-
ties, support fishery operations, and are reservoirs of freshwater for drinking water and
crop irrigation (O’Sullivan, 2005). Recognizing the value of not only lakes, but of all
surface waters of the United States, the United States Government has taken regulatory
action to protect surface water quality. One measure of water quality is water clarity.
Water clarity is an important indicator of the general health of a lake system, including
the amounts of sediment present, algal biomass, and the trophic condition of the lake
(Bronmark & Hansson, 2005; Dodson, 2005).

One of the greatest threats to lakes in Maine, USA, is the nutrient enrichment.
Sources that contribute to nutrient enrichment include fertilizers, storm water and
agricultural runoff, and land-use/land-cover (LULC) change. While nutrients are
necessary for the healthy functioning of aquatic ecosystems, excessive nutrient loads
may cause lake water to become more biologically productive. The result is the
increased growth of algae and other aquatic plants, which ultimately disturbs the natural
equilibrium of the lake ecosystem and can contribute to considerable economic and
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ecological problems over time. One measure of change in the biological productivity of
surface waters is water clarity; however, “many years” of data are generally needed to
monitor and assess such changes (Maine VLMP, 2013). In Maine, water clarity has
been monitored in selected lakes since the early 1950s and yet, though the number of
lakes monitored has increased over time, many lakes within the State lack this valuable
information (University of Maine George J. Mitchell Center for Environmental and
Water Research, 2011).

Traditional methods of measuring lake water quality involve direct, in situ measure-
ments. While in situ measurements are accurate for a single point and time, they often
do not provide a spatial or temporal view of water quality (Ritchie, Zimba, & Everitt,
2003). Alternatively, satellite remote sensing allows for assessment of large areas and
greater temporal coverage of lake water quality, making possible the assessment of
multiple water bodies effectively, efficiently, and at a reduced cost. Moreover, monitor-
ing lake water quality and LULC using satellite remote sensing enables managers to be
retrospective and investigate the relationship between the landscape and lake water
quality (Kloiber, Brezonik, & Bauer, 2002).

The use of remote sensing imagery has been well documented for water clarity
studies. Early research demonstrated the utility of Landsat imagery to classify lakes
within a predefined trophic class (Scarpace, Holmquist, & Fisher, 1979) and predict
Secchi disk depths (SDDs) (Lillesand, Johnson, Deuell, Lindstrom, & Meisner, 1983).
A more recent study of approximately 500 lakes in Minnesota using Landsat imagery
from 1973 through 1998 found “excellent agreement between satellite-estimated and
ground-observed [Secchi disk transparencies] can be achieved” (Kloiber et al., 2002).
Research by Chipman, Lillesand, Schmaltz, Leale, and Nordheim (2004) resulted in a
statewide database for Wisconsin of lake transparencies based on water clarity data
derived from Landsat imagery, and, in Minnesota, a 20-year assessment of over 10,000
lakes resulted in a consistently strong relationship between water clarity values derived
from Landsat data and field-measured Secchi disk values (Olmanson, Bauer, &
Brezonik, 2008).

Given that many lakes within Maine lack sufficient monitoring of water clarity, our
study objectives were to use approximately 25 years (1984 to 2008) of Landsat data to
(1) determine if satellite-based spectral data could be used to estimate water clarity, (2)
determine if water clarity in east-central Maine exhibited a systematic change over
time, and (3) determine whether changes in water clarity could be attributed to LULC
change in the study area. The ability to accurately estimate water clarity with satellite
data and evaluate connections with LULC will enable land managers to effectively
characterize ecosystem processes and monitor trajectories of change.

Study area and methods

Study area

Maine, the northeastern-most state in the United States, has nearly 6000 lakes. Ninety
percent of lakes in Maine are drainage lakes, in which most of the water flowing into and
out of the lake is surface water (Hasbrouck, 1995). Lakes in Maine are well-distributed
geographically and vary in size from less than 1.0 ha to greater than 30,350 ha. For this
research, the study area was limited to one Landsat 5 scene (approximately 32,000 km2)
with coverage of eastern and central Maine (Figure 1). This area is located primarily
within EPA Ecoregion 82, identified as the Laurentian Plains and Hills, a region where
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glacial processes created numerous lakes and wetlands. The United States Geological
Survey (USGS) and EPA Land Cover Trends Project reported a 9.5% change in the
region’s land cover between 1972 and 2000, with forest cover as the consistent dominant
land-cover class. (Moreland, [n.d.]).

In situ water clarity data

In situ water clarity data for more than 800 lakes in Maine from 1952 through 2008
(availability varies by lake and year) were compiled by the University of Maine George
J. Mitchell Center for Environmental and Water Research (2011). Water clarity was
measured using Secchi disks and reported in feet. Use of these data allowed water clar-
ity values to be determined for lakes within each Landsat 5 image. The availability of
in situ data varied by lake and by year. Lakes in the database with water clarity values
within +/−7 days of each Landsat 5 image date (Table 1) were selected. If more than
one value was available, the SDD measured closest to the image date was used. Fol-
lowing methods described by Kloiber, Brezonik, Olmanson, and Bauer (2002), Landsat
5 spectral bands that best correlated with in situ SDD values were identified through
use of Pearson correlation coefficients and stepwise multiple regression analysis. A

Figure 1. Study area extent in east-central Maine. Color figures are available in the online
version of this article.
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technical document by Olmanson, Kloiber, Bauer, and Brezonik (2001) provided addi-
tional information and step-by-step guidelines for Landsat image processing to extract
lake water clarity values. The availability of in situ data enabled the extraction of water
quality values from Landsat 5 imagery. Once the values were extracted, the in situ data
were not included in further analysis.

Remote sensing data-sets and image processing

Six Landsat 5 TM scenes (Path 11 Row 29) between 1984 and 2011 were analyzed for
our study (Table 1). Preference was given to images acquired between 15 July and 15
September, with a preference for August (Olmanson, Bauer, & Brezonik, 2008) as
water clarity was most stable during that time period.

Classification of LULC for each Landsat image enabled the identification of indi-
vidual land-use classes for each image as well as open-water areas from which to
extract water quality values for individual lakes. Prior to LULC classification, each
Landsat scene was processed to convert reflective wavelength bands from digital num-
bers to top-of-atmosphere (TOA) reflectance using calibration coefficients and associ-
ated equations provided by Chander, Markham, and Helder (2009). To maintain
consistency with nationally recognized land-cover databases, the LULC classification
system used by the Multi-Resolution Land Characteristics Consortium 2001 National
Land Cover Data-set was used for this study (Homer, Huang, Yang, Wylie, & Coan,
2004). Only primary (i.e., Level 1) classes present within the study area were used.
They included water (identified as open water), developed land, barren land, forest,
planted/cultivated areas, and wetlands. A maximum likelihood algorithm was applied to
each image data-set, where training sites were identified from high resolution aerial
imagery acquired between 1996 and 2005. Accuracy assessments for each LULC image
were performed to determine overall, the user, and producer LULC classification accu-
racies. Validation points for each accuracy assessment followed a stratified random
sampling framework, and the reference data employed a combination of the original
Landsat and high-resolution aerial imagery. Following the methods outlined by Jensen
(2005), a sample size based on a multi-nomial distribution with an 85% confidence
interval was used, resulting in 362 accuracy assessment points with a minimum of 30
points within each class once points affected by clouds or haze were excluded. The
number of accuracy assessment points per class varied such that land-cover classes with
a smaller footprint on the ground had fewer points than land-cover classes that
occupied a greater proportion of the landscape.

Table 1. List of Landsat 5 images included in the study. All images were acquired between
10:23 am and 11:08 am local time.

Year Date Cloud cover* (%)

1986 August 5 10
1995 August 14 2
1999 August 25 0
2000 July 26 0
2005 August 9 15
2008 July 16 0

*As reported by USGS GloVis (USGS, 2014).
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Identification of lake catchments and areas of interest (AOI) for analysis

The immediate catchments for each lake in the study were identified using existing
drainage divide polygons available from the Maine Office of GIS (USGS and MGS,
1994). The immediate catchment was used, as opposed to an entire catchment, since
lakes in Maine are often drainage lakes that connect to other lakes through a series of
rivers or streams. The connection between multiple lakes creates overlapping catch-
ments for lakes within the region; thus, using only the immediate catchment resulted in
each lake having a unique catchment. AOIs within each lake were used to extract
reflectance values from the Landsat scenes.

AOIs were created using the classified images, where polygons were first generated
based on the boundary between open-water and non-open-water class pixels. Then, to
mitigate the possibility of selecting open-water pixels influenced by land or vegetation
(i.e., mixed pixels), each AOI was offset inward by 120 m. These intermediate AOIs
were used with the Landsat TOA reflectance data in an unsupervised classification. The
ISODATA algorithm was implemented to identify spectral signatures for open water
and to eliminate shallow water areas where sediment and/or the presence of aquatic
plants may influence spectral response (Olmanson et al., 2001) and thus influence water
clarity modeling. The area remaining within a given lake AOI after the 120-m offset
and eliminating pixels indicative of shallow water was refined one final time based on
lake depth (MEDEP and MEIFW, 2011). Lake depth was used to ensure that water
clarity values were stable over the spatial extent for which satellite reflectance values
were modeled. The deepest point for each lake was selected, and a buffer of 535 m
(the buffer width required to select an area containing a maximum of 1000 pixels) was
created around each point. The intersection of this buffer and the AOI for each lake
was used as the final AOI for spectral data extraction. If no information regarding lake
depth was available, the approximate center of the lake was used. Lakes with a final
AOI less than 120 m in width or length were eliminated from further study as well as
lakes with an AOI of less than nine pixels (Kloiber et al., 2002). A series of images
that illustrate the process of AOI selection for a single lake are provided in Figure 2.
An example of a single lake within the study area, the lake catchment, the 100- and
500-m buffer areas around the lake perimeter (addressed in following sections), LULC
classifications, and the lake AOI is provided in Figure 3.

Water clarity modeling

Since the raw in situ SDD data exhibited a non-normal distribution, a natural log (ln)
data transformation was applied prior to regression analysis. Landsat 5 TOA reflectance
values for bands 1–5 and 7 were extracted based on the final AOIs delineated for each
lake in the study. Mean reflectance values for each AOI were used as independent vari-
ables in a stepwise multiple regression to estimate SDD.

Analysis of change in water clarity over time

Individual multi-variate regression analyses were used to determine if a systematic, sta-
tistically significant (p ≤ 0.05) change in water clarity had occurred over the time period
of analysis (1984–2011). The independent variable (time) was identified as the study
year of the Landsat 5 image, while the dependent variable was SDD data obtained
in situ. The regression analyses were completed using all lakes in the study area that
had data for all study years. First, regression analyses were performed for individual
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lakes. Next, similar analyses were performed using the average water clarity values for
all lakes within each study year to determine if there was a significant change over time
in the region as a whole.

Evaluation of effect of LULC on water quality change

For lakes that exhibited a statistically significant change in water clarity, the LULC
class proportions were summarized by 100- and 500-m buffers surrounding each lake
and by immediate catchment for individual study years. Again, regression analyses
were performed to determine if any of the lakes with a statistically significant change
in water clarity during the study period also exhibited a change in one or more LULC
class within the same time period. Separate regressions for each lake and each LULC
class enabled the identification of lakes and their associated catchment and or/buffers
that exhibited both changes during the study period.

Figure 2. Image illustrating the process of AOI selection for a single lake.
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Results

LULC classifications

The overall accuracies associated with the supervised classifications ranged from 79 to
85%, with Kappa statistic values of 0.74–0.80 (Table 2). Producer and user accuracy
values varied between LULC classes as well as images. Producer accuracy indicates
the probability of an accuracy assessment point or pixel being correctly classified; user
accuracy indicates the probability that a classified pixel actually represents that LULC
class on the ground (Jensen, 2005).

Water clarity estimates

Regression analyses between SDD and Landsat 5 TOA reflectance values explained
between 70% (year 2000) and 89% (year 2008) of measured variation. The ratio between
blue (B1) and red wavelengths (B3) was consistently selected as a strong explanatory
variable, as was the shortwave infrared band (B7). Refer to Table 3 for the best-fit model
equations, R-squared, and F values associated with each equation. Refer to Figure 4 for
scatter plots of the in situ water clarity values and estimated water clarity values.

Temporal changes in water clarity

Forty lakes were examined after implementing the criterion that all lakes had complete
regression-modeled water clarity for each of the six study years; no other additional
lakes had data available for all six study years. Results of the linear regression analysis
with time as the independent variable and water clarity as the dependent variable found
that only one lake (Unity Pond in Waldo County) exhibited a significant change in

Figure 3. Example of a single lake within the study area, the lake catchment, the 100-m and
500-m buffer areas around the lake perimeter, LULC classifications, and the lake AOI.
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water clarity based on water clarity values extracted from the six Landsat 5 images.
For Unity Pond, the overall water clarity, as modeled by regression analysis, decreased
1.21 m over the study period. When all lakes in the study year were evaluated together,
the average change in water clarity was not found to be statistically significant.

To increase the sample size, an analysis was also run without data from 2005 since
that particular scene exhibited extensive cloud cover. With data from 2005 removed, the
number of lakes with water clarity data available for all years increased from 40 to 99.
Even with a sample size of 99, only two lakes (Stafford Pond in Somerset County and
Black Pond in Hancock County) exhibited a substantial change in water clarity over the
study period. In both cases, the lakes were identified as having exhibited an increase in
water clarity; Stafford Pond had an overall increase of 1.47 m and Black Pond had an
overall increase of 2.61 m. Average water clarity values for the 99 lakes did not exhibit
a statistically significant regional change over the time period of analysis.

Relationship between water quality and LULC change

A linear regression between water clarity and percent cover for each LULC class was
completed for Unity Pond, the only lake in our study that exhibited a significant
decrease in water clarity over the entire study period (1984–2011). Results of the
regression analyses indicated that LULC change within the lake catchment was not sig-
nificant; however, a 6.74% increase in the percent cover of developed land within the
100-m buffer and a 6.64% decrease in percent cover of open water may have contrib-
uted to the decrease in water clarity.

When data from 2005 were excluded from the analysis, Stafford Pond was the only
lake that exhibited a significant change in any LULC class. Within 100 m of Stafford
Pond, planted/cultivated land decreased by 5.48%. Finally, while water quality values
extracted from Landsat imagery for Black Pond indicated an increase in water clarity by
a depth of 2.61 m, no relationship between LULC class change and clarity were evident.

Discussion

Applicability of satellite data to estimate water clarity

Our results indicate that lake water clarity values, represented by SDD, can be success-
fully modeled with Landsat 5 TOA reflectance data. R-squared values associated with

Table 3. Summary of best-fit model equations for estimation of lake water clarity values using
Landsat 5 spectral data.

Year Equation: ln(SDD) =
R2

F value n Days(p ≤ 0.001)

1986 −12.669 + 4.199(B1:B3) + 217.813(B7) + 88.686(B3) 0.73 47.83 56 +/−5
1995 −4.931 + 2.309(B1:B3) + 157.857(B7) 0.81 148.44 71 +/−5
1999 −5.858 + 2.666(B1:B3) + 380.539(B7) 0.83 144.49 64 +/−3
2000 0.936 + 1.564(B1:B3) + 58.380(B7)−45.608(B1) 0.70 32.39 46 +/−3
2005 −16.044 + 4.133(B1:B3) + 194.081(B7) + 80.070(B1) 0.81 29.25 24 +/−7
2008 −4.064 + 1.961(B1:B3) + 166.400(B7) 0.89 216.56 55 +/−5

Note: Equations in Table 3 include values associated with Landsat 5 TM bands, where B1 = blue, B3 = red,
B7 = shortwave infrared, and B1:B3 represents a ratio between the blue and red bands. “n” indicates the num-
ber of lakes with in situ data used to create best-fit model and “Days” refers to the timeframe of in situ data
used based on days before or after the Landsat 5 image date.
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the models ranged from 0.70 to 0.89, indicating that the models explain most of the
variation in water clarity sampled in the field. Moreover, our estimates and the associ-
ated R-squared values are consistent with those reported by other researchers modeling
water clarity values based on Landsat imagery (Kloiber, et al., 2002; McCullough,
Loftin, & Sader, 2012).

Challenges associated with accurate estimation of water clarity involve the physical
interactions of energy and constituents within a water column. For example,
McCullough, Loftin, and Sader (2012) performed a similar analysis of satellite-based
water clarity estimates and found that the trophic state of the lake influenced model
estimates such that the common predictor variable B3 (red wavelength) performed
poorly for clearer water bodies than lakes with higher concentrations of suspended
materials or algae. Although our study does not differentiate between trophic states,

Figure 4. Scatter plots showing the in situ (observed) water clarity values measured as SDDs in
meters (x-axis) and the water clarity values estimated from Landsat 5 TOA reflectance (y-axis).
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exploration in future studies is warranted. Another challenge associated with establish-
ing a relationship between satellite spectral data and in situ Secchi disk data involves
the temporal discrepancy between when data are collected in the field and the fre-
quency of satellite overpass. Past research has determined that in situ data collected
within 7 days of a satellite overpass are generally acceptable for determining lake water
clarity values (Kloiber, Brezonik, Olmanson, et al., 2002), however, Landsat 5 had a
temporal resolution of 16 days. While the use of in situ data collected closer to the time
of satellite overpass reduces error when estimating water clarity values, increasing the
time frame (i.e., using in situ data collected greater than +/−7 days from the date of
overpass) would have increased our overall sample size as well as the geographical area
from which the data were collected. In addition to an increased number of observations
for training, a larger sample size would have facilitated model validation as well.

Temporal trends in water quality and LULC change

Based on water quality data extracted from Landsat imagery, out of 40 lakes with data
for all six study years, only one lake exhibited a significant change in water clarity.
When study year 2005 was removed from the analysis, there were a total of 99 lakes
with data for the remaining five study years, yet only two lakes exhibited a statistically
significant change in water clarity based on the Landsat-based water quality estimates.
Moreover, based on our analysis of the Landsat water quality estimates of the lakes
and dates examined as part of this study, we found that overall water clarity remained
relatively constant since 1986, with few lakes experiencing a significant increase or
decrease in water clarity. Although previous research in other regions supports our find-
ings of overall stable water clarity values when assessing multiple lakes within a region
(Bruhn & Soranno, 2005; Kloiber, Brezonik, Olmanson, et al., 2002; Olmanson, Bauer,
& Brezonik, 2008; Terrell, Watson, Hoyer, Allen, & Canfield, 2000), these results
should be interpreted in the context of imagery collected during the summer (i.e., typi-
cally stable water clarity) and three to nine years apart over a period of 22 years. Thus,
water clarity fluctuations due to seasonal changes or over very short time periods are
not captured in this analysis.

Our findings with regard to the relationships between lakes with increased or
decreased water clarity and LULC changes indicate that no clear relationship is evident.
It should be noted, however, that a major limitation to this component of the analysis
was that very few lakes in the region exhibited substantial changes in water clarity.
Future research may benefit from a focus specifically on additional lakes with known
changes in water clarity to assess whether a consistent relationship with LULC change
can be detected. Alternately, future research could focus on areas where considerable
LULC change has occurred to determine if such changes affect water clarity. Focusing
on fewer lakes with known changes in either water clarity or LULC would provide a
finer spatial extent and facilitate a more detailed LULC classification. For this study, the
lakes and their associated lake catchments and buffers were contained within an entire
Landsat 5 scene (approximately 32,000 km2), of which the lake catchments and buffers
occupied about 6500 km2. Moreover, it is worth noting that, where change does occur,
there are other potential causes besides changes in LULC. For example, the introduction
of zebra mussels (Dreissena polymorpha) to the Great Lakes ecosystem has affected
water clarity within the Great Lakes. Point-source discharges and nutrient loading may
also lead to algal blooms that impact water clarity (Binding, Jerome, Bukata, & Booty,
2007) and, while related, may not directly show up as changes in LULC.
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Influence of satellite image classification and associated accuracies

The overall accuracy of the supervised classifications varied from 79 to 85% over the
six study years. When evaluating the accuracy of a single LULC class between years,
the accuracy varied even more. A variation in accuracy between images inherently adds
uncertainty to any analysis that compares changes in LULC between years. For
example, the 6.64% decrease in percent cover of open water associated with LULC
change surrounding Unity Pond may be attributed to classification differences of deep,
dark water and near-shore water, particularly if the water near shore exhibited increased
sedimentation for later image dates and those pixels were attributed to a different land-
cover classes. If future assessments focused specifically on lakes with known changes
in water quality or on lake catchments/buffers with known changes in LULC, the accu-
racy of the LULC classification could be improved, especially if the classified areas
were smaller. Unfortunately, a more focused study area would eliminate the regional
perspective that studies such as this sought to provide.

Overall, the examination of the relationship between changes in water clarity and
changes in LULC did not identify any clear, consistent, or potentially causal relation-
ships. The sample size for lakes that exhibited a significant change in water clarity was
not large enough to indicate a clear, consistent, relationship with LULC change. As
previously stated, future research regarding the effect of LULC change on water clarity
would likely benefit from focusing on lakes or lake catchments/buffers with known
changes.

Conclusion

This study evaluated the utility of Landsat spectral data to estimate in situ Secchi disk
measurements of water clarity for lakes located in east-central Maine using six specific
image dates over an analysis period of 22 years (1986–2008). Using multiple linear
regressions, we found models that incorporated the blue, red, and mid-infrared spectral
bands accounted for 70–89% of Secchi measured water clarity. Landsat-estimated water
quality values for the six image dates were then evaluated to determine if water clarity
exhibited a systematic change over time. Results suggest that for our specific study per-
iod of six summer dates, that only 1 of 40 lakes exhibited a significant change in water
clarity. To increase sample size, one image date (2005) was excluded from analysis,
resulting in a sample data-set of 99 lakes. Temporal analysis of this larger data-set
resulted in two different lakes exhibiting statistically significant changes in water clar-
ity. These results suggest that, while satellite imagery can be used to assess water
clarity over time, the image dates selected for analysis can influence analysis results.

Land-cover classifications were also completed for each image date of analysis
using a maximum likelihood classification. Overall classification accuracies ranged from
79 to 85% for 2008 and 1995, respectively. LULC changes over the 22-year analysis
period were evaluated to determine if changes in lake water clarity could be attributed
to LULC change within the catchments for lakes that exhibited significant changes in
water clarity. Analyses regarding the relationship between temporal changes in water
clarity and LULC identified some statistically significant relationships (e.g., increase in
urban cover, decrease in planted/cultivated land); however, the relationships were not
consistent among catchments and are likely attributed to LULC classification error.

Overall, the results of this study lend support to the utility of Landsat imagery to
monitor and assess water clarity for individual lakes and open-water bodies within a
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larger region and support previous research in proving the ability of satellite imagery to
enable evaluation of larger spatial and longer temporal scales than assessments that rely
solely on the existence of in situ data.
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