Mathworks at Texas State University
Mathworks Math Contest

For Middle School Students
November 2, 2011
COVERSHEET

Student First Name: \qquad Last Name: \qquad

Current Grade in School: \qquad
Home Address: \qquad
City: \qquad State: \qquad Zip: \qquad
Home Phone: (\qquad
\qquad
E-mail Address: \qquad

School Name: \qquad
School Address: \qquad
City: \qquad State: \qquad Zip: \qquad
Teacher: \qquad

Check Math Courses Taken:
\square Pre-Algebra $\quad \square$ Algebra $1 \quad \square$ Algebra $2 \quad \square$ Geometry

Student Birth date (MM/DD/YYYY): \qquad I \qquad 1 \qquad

Gender: \square Male \square Female

Are you a U.S. Citizen or Permanent Resident? \square Yes $\quad \square$ No
Return Completed Test by November 9th to:
Mathworks
ASBS 110
Texas State University
601 University Drive
San Marcos, TX 78666

1 of 8

Test Directions

- 15 problems
- 120 minutes (2 hours)
- NO calculators allowed
- Show all your work and how you obtained each answer
- Clearly mark your answers (circle or box)
- Use additional paper as needed.
- Do your best and good luck!

1) If the remaining part of the day is $\frac{4}{3}$ of the part of the day that has passed, how many hours of the day are left?
2) A banker filled 6 boxes with money totaling $\$ 600$, each with $\$ 1$ more than the previous. How much money was placed in the third box?
3) Julio's teacher asks the class to write down a list of positive integers between 20 and 50 such that no two numbers on the list have a prime factor in common. How many numbers are in the largest possible list meeting this requirement?
4) In the figure, the rectangle at the corner measures 3 cm by 6 cm . What is the radius of the circle in cm ?

5) Let $\overline{A B}$ and $\overline{C A}$ be two-digit numbers. Suppose $\overline{A B} \times 4=\overline{C A}$. Find $A+B+C$.
6) How many of the factors of 630,000 are divisible by 20 ?
7) Kate exercises on a treadmill for exactly 1 hour, some of the time running at 7 mph and some of the time walking at 3 mph . The treadmill registers that she has covered 6.6 miles. How much further must she run if she wants to run a total of 7 miles, not counting the distances she walked?
8) In how many ways can the integers 1-9 be written in the cells of the $3 x 3$ grid, one number per cell, if no two adjacent cells can both contain odd numbers? [Cells are adjacent if they share an edge.]

9) Triangle ABC has $\mathrm{AB}=7, \mathrm{BC}=8$ and $\mathrm{AC}=9$ units. H is a point of BC so that AH is an altitude and M is the midpoint of AC. Segment MB intersects segment AH at point P . What is the ratio of BP to PM ?

10) Square $A B C D$ has sides of four units and semicircles are drawn with their centers at the midpoints of the sides. What is the area of the shaded region in terms of π ?

11) Mary is placing colored beads on a string. She begins with a red, white and blue bead in that order. She continues with 1 red, 2 white and 3 blue beads. Keeping the same color order she places 1 red, 3 white and 6 blue beads on the string. In general she follows the pattern that each set of red, white and blue beads will consist of 1 red bead, n white beads and $\frac{n(n+1)}{2}$ blue beads. When she places the $2012^{\text {th }}$ blue bead on the string what is the total number of beads on the string?
12) Let $A B C$ be a right triangle and D be a point of hypotenuse $B C$ so that $A D$ is an altitude. Suppose $A B / A D=5 / 2$. Find $A C / A D$.
13) Let x be an integer. If $\left(\sqrt{x+\frac{1}{2} \sqrt{2011}}-\sqrt{x-\frac{1}{2} \sqrt{2011}}\right)$ is an integer, find x.
14) Trapezoid ABCD has base $\mathrm{AB}=14$ and base $\mathrm{CD}=30$. A segment EF is parallel to the bases and divides the trapezoid into two equal areas. What is the length of EF?
15) How many paths are there from point A to point B, if a path must follow the horizontal and vertical segments, no segment can be traversed twice, and no horizontal segment can be traversed in the right-to-left direction?

A

