Po Leung Kuk $12^{\text {th }}$ Primary Mathematics World Contest Individual Contest 2008

1. Four couples are eating oranges. Among the four wives, A has eaten 3 oranges, B has eaten 2 oranges, C has eaten 4 oranges and D has eaten only 1 orange. Among the husbands, R has eaten as many oranges as his wife has, S has eaten twice as many as his wife has, T has eaten 3 times as many as his wife has, and U has eaten 4 times as many as his wife has. If 32 oranges are eaten, who is T 's wife?
2. There is a 5 -digit number that is divisible by 9 and 11 . If the first, the third and the fifth digits are removed, it becomes 35 . If the first three digits are removed, it becomes a 2-digit number that is divisible by 9. If the last three digits are removed, it becomes a 2 -digit number that is also divisible by 9 . What is this number?
3. How many integers from 1 to 100 do not include the digit 1 ?
4. A man gives $\frac{1}{3}$ of his money to his son, $\frac{1}{5}$ of his money to his daughter and the remaining money to his wife. If his wife gets $\$ 35000$, how much money did the man originally have?
5. Calculate $\frac{1 \times 2 \times 3+2 \times 4 \times 6+3 \times 6 \times 9+\cdots+2008 \times 4016 \times 6024}{3 \times 4 \times 5+6 \times 8 \times 10+9 \times 12 \times 15+\cdots+6024 \times 8032 \times 10040}$.
6. Three girls, A, B and C are running a 100 m race. Spectators D, E and F are discussing each girl's chance to win:
D says A will be first.
E says C will not be last.
F says B will not be first.
If only one spectator is right, then who will be first?
7. In the following figure, $A B$ is the diameter of a circle with centre O. Point D is on the circle. In the trapezoid $A B C D$,
i) line segments $A B$ and $D C$ are both perpendicular to $B C$, and
ii) $A B=2 C D$.

Arc $D M B$ is part of a circle with centre C.
What is the ratio between the area of the shaded part and the area of the circle?
(Take π as $\frac{22}{7}$)

8. Find the smallest positive integer, divisible by 45 and 4 , whose digits are either 0 or 1 .
9. Find the greatest value of $a+\frac{1}{b+\frac{1}{c}}+d+\frac{1}{e+\frac{1}{f}}+g+\frac{1}{h+\frac{1}{i}}$, where each letter represents a different non-zero digit.
10. In the two arithmetic problems below, the four different shapes

represent exactly one of the numbers $1,2,4$ or 6 but not necessary in that order. The symbol is zero. What number does each shape represent so that both problems work?

11. The figure on the right is a rectangle whose shaded area is made up of pieces of a square tangram having an area of $10 \mathrm{~cm}^{2}$, as shown on the left. What is the area of the rectangle?

12. Find the remainder of $2^{2008}+2008^{2}$ divided by 7 .
13. Six different points are marked on each of two parallel lines. How many different triangles may be formed using 3 of the 12 points?

Only

14. There are 12 identical marbles in a bag. two, three or four marbles may be removed at a time. How many different ways are there to remove all the marbles from the bag?
For example, here are 3 different ways,
i) 4 then 3 then 3 and then 2 ,
ii) 2 then 3 then 3 and then 4 ,
iii) 2 then 2 then 2 then 3 and then 3 .
15. John walks from town A to town B. He first walks on flat land, and then uphill. He then returns to town A along the same route. John's walking speed on flat land is $4 \mathrm{~km} / \mathrm{h}$. He walks uphill at a speed of $3 \mathrm{~km} / \mathrm{h}$ and he walks downhill at a speed of $6 \mathrm{~km} / \mathrm{h}$. If the entire journey took 6 hours, what is the distance from town A to town B?
