# Po Leung Kuk $9^{\text {th }}$ Primary Mathematics World Contest Group Contest 2005 

Team: $\qquad$
Question 1:
Call an integer "happy", if the sum of its digits is 10 . How many "happy" integers are there between 100 and 1000 ?

Ans:

Question 2:
Compute the sum of $a, b$ and $c$ given that $\frac{a}{2}=\frac{b}{3}=\frac{c}{5}$ and the product of $a, b$ and $c$ is 1920 .

Ans:

## Question 3:

Replace the letters $a, b, c$ and $d$ in the following expression with the numbers $1,2,3$ and 4 , without repetition:

$$
a+\frac{1}{b+\frac{1}{c+\frac{1}{d}}}
$$

Find the difference between the maximum value and the minimum value of the expression.

Ans:

## Question 4:

Buses from town A to town B leave every hour on the hour (for example: 6:00, 7:00, ...).

Buses from town B to town A leave every hour on the half hour (for example: 6:30, 7:30, ...).

The trip between town A and town B takes 5 hours. Assume the buses travel on the same road.

If you get on a bus from town A , how many buses from town B do you pass on the road (not including those at the stations)?

Ans:

## Question 5:

Mr. Wong has a 7-digit phone number ABCDEFG. The sum of the number formed by the first 4 digits ABCD and the number formed by the last 3 digits EFG is 9063 . The sum of the number formed by the first 3 digits ABC and the number formed by the last 4 digits DEFG is 2529 . What is Mr. Wong's phone number?

Question 6:

$$
\begin{aligned}
1+2 & =3 \\
4+5+6 & =7+8 \\
9+10+11+12 & =13+14+15 \\
& \vdots
\end{aligned}
$$

If this pattern is continued, find the last number in the 80th row (e.g. the last number of the third row is 15 ).

## Question 7:

Skipper's doghouse has a regular hexagonal base that measures one metre on each side. Skipper is tethered to a 2 -metre rope which is fixed to a vertex. What is the area of the region outside the doghouse that Skipper can reach? Calculate an approximate answer by using $\pi=3.14$ or $22 / 7$.


## Question 8:

An isosceles right triangle is removed from each corner of a square piece of paper so that a rectangle of unequal sides remains. If the sum of the areas of the cut-off pieces is $200 \mathrm{~cm}^{2}$ and the lengths of the legs of the triangles cut off are integers, find the area of the rectangle.


Ans: $\mathrm{cm}^{2}$

## Question 9:

Select 8 of the 9 given numbers: $2,3,4,7,10,11,12,13,15$ and place them in the vacant squares so that the average of the numbers in each row and column is the same. Complete the following table.

Ans:

| 1 |  |  |  |
| :--- | :--- | :--- | :--- |
|  | 9 |  | 5 |
|  |  | 14 |  |

## Question 10:

Find the largest 12-digit number for which every two consecutive digits form a distinct 2-digit prime number.

