MATH ODYSSEY

How Small is Small?

Nanotechnology is an area of interest to many scientist and engineers today-but do you know where the term nano comes from? Nano refers to the nanometer, a unit used to measure really small objects such as atoms.

Let's start with a meter, which makes a good choice for measuring your height or your room A kilometer may be more suitable for a longer length, such as the distance from your home to school.

To measure smaller objects, such as a pinhead, a more appropriate unit would be a millimeter, which is $1 / 1000$ of a meter. While we write $1000=10^{3}$, we write $1 / 1000$ as 10^{-3}. Cells which are even smaller than pinheads are often measured in micrometers, which is $1 / 1000$ of a millimeter or $1 / 1,000,000$ of a meter. Notice that since 1 millimeter $=10^{-3}$ meter, then 1 micrometer $=\left(10^{-3}\right)\left(10^{-3}\right)$ meter $=10^{-6}$ meter.

To measure the size of molecules and individual atoms, the nanometer serves as a measurement unit. One nanometer is $1 / 1000$ of a micrometer. Can you determine what fraction 1 nanometer is of a meter?

An individual atom such as hydrogen is less than one nanometer. DNA molecules are about 2.5 nanometers wide and red blood cells are about 10,000 nanometers. A man who is two meters tall is 2 billion nanometers tall!

Working at this almost invisible and certainly miniaturized environment, this technology holds the promise of smaller computers and stronger, lighter and more conductive materials. \qquad
However, there are some health concerns from nanoparticles that may prove to be toxic or damaging to the environment and to animals and humans.

Already in use are some products of nanotechnology that include magnetic recording tapes, computer hard drives, bumpers on cars, sunscreens and cosmetics. Ever wonder what unit could be smaller than a nanometer?

References:

"It's a small, small world" by Rick Weiss, Austin American-Statesman, February 8, 2004
"Virtual Nanotech" by Alexandra Goho, Science News, February 7, 2004, pg. 87
"Nanotech Under the Microscope" by Anne Geske, Utne, July-August 2004, pg 15

Dear Math Explorers,

A new year is right around the corner and 2005 promises to be an interesting year. Though not prime, 2005 is certainly an odd number. Can you find other interesting features about this number? Share your observations with us and we'll post them on our website.

We enjoy bringing you articles and puzzles that intrigue you and bring hours of fun, too! We at Math Explorer wish you very happy holidays!

Sincerely,
Stioter I. Warshauer Hiroko K. Warshauer, Executive Editor

POLYGONS are all Ears?!?

Hypatia, Woman Mathematician
It's a small, small world - nanotechnology

Math Exploser
 Contents

Hypatia
by Jean Davis

Problems Page
. . 3
Angles, Triangles and Ears . 4 by Max Warshauer

Puzzle Page 6
Bulletin Board 7
Order Form 7
Math Odyssey 8

Executive Editor: Hiroko K. Warshauer
Senior Editors: Eugene Curtin, Terry McCabe,

Max Warshauer
Special Writers: Jean Davis, Max
Warshuaer
Design: Amanda Inglish
Final Editing and Proofreading: David Nelson,

Michael Kellerman

> Math Explaser

Texas State University-San Marcos San Marcos, TX 78666
Phone: (512) 245-3439, Fax: (512) 2451469
e-mail: max@txstate.edu
Visit our website: www.txstate.edu/mathworks
Math Explorer is published by

Hypatia

by Jean Davis
The first woman mathematician was Hypatia, who lived from 370 to 415 A.D. Her father, Theon, was a professor of mathematics at Alexandria in Egypt. At the time, Alexandria was the greatest seat of learning in the world and Hypatia was immersed in an atmosphere of learning from her earliest years. She was an excellent student and was later asked to teach mathematics and philosophy at Alexandria.
Hypatia was truly her father's "golden girl." He trained her from childhood to be the ultimate example of the ideal woman. She was beautiful in appearance, physically fit, intellectually brilliant, kind, and virtuous. People spoke of her in glowing terms, calling her " mother, sister, reverend teacher."

Hypatia wrote mostly what we call commentaries or explanations of the works of others. These were very important, as they made it possible for other people to understand very difficult mathematics. Many of her writings were prepared as textbooks for her students
Hypatia was particularly interested in a type of equation we call "diophantine equations." These are equations whose solutions are restricted to integers.
Example: In what ways can a person make change for a dollar using only nickels, dimes and quarters?

> If $\mathrm{n}=$ the number of nickels $\mathrm{d}=$ the number of dimes $\mathrm{q}=$ the number of quarters The equation becomes $\begin{gathered}5 \mathrm{n}+10 \mathrm{~d}+25 \mathrm{q}=100\end{gathered}$ One solution is $\mathrm{n}=6, \mathrm{~d}=2, \mathrm{q}=2$?

Hypatia was a beautiful, highly intelligent woman and a very popular teacher. She achieved things that, as far as we know, no woman before her even dreamed of doing. Her death in 415 signaled the end of the Golden Age of Greek mathematics.

Resources: Burton, David M., The History of Mathematics, 5th edition.
McGraw-Hill Companies, Inc. New York
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Hypatia.html
Jean Davis has been a member of the Mathematics faculty at Texas 2 State since 1979. She loves telling people about mathematics and is particularly interested in the history of mathematics.

Bulletin Board

Math Bytes-Check it out!
Math Olympiads offers monthly math contests for students in grades 4-8. For more information, visit www.moems.org

The Mathematical Association of America sponsors the American Mathematics Competition for students in grades 6-12 to enrich the problem solving and mathematical experiences for students. Visit its website at www.unl.edu/amc/whatswhat.html

Math Explorer magazine (aimed at grades 4-8) is published four times a year. An annual subscription is $\$ 8.00$ for individuals, $\$ 6.00$ for group purchases of 25 or more, and $\$ 4.00$ for school purchases of 100 or more. For subscriptions, fill out the order form above or contact Math Exploser at the address, phone, or e-mail on page 2.

Angles, Triangles and Ears

by Max Warshauer

A simple polygon is a closed figure with n sides, where none of the sides overlap. For example, Figure A below is a simple polygon, while Figure B is not.

Fig. A Fig. B
Have you ever thought about adding up the angles in a polygon? Do you always get the same answer if two polygons have the same number of sides? In order to study problems in mathematics, we often begin by looking at simple examples first to see if there is a pattern. So we will begin by looking at the simple polygon with the least number of sides-the triangle. Triangles are like the building blocks of polygons.

To study this problem, we will need a fundamental property of parallel lines:

Corresponding Angle Property

If 2 parallel lines are cut by a straight line (called a transversal), then the corresponding angles are equal.

We also will need the:

Vertical Angle Property

If two lines intersect at point P, then the vertical angles are equal.
 extend each of the sides. Next, we construct a line through C parallel to the base AB.

we have done this, we can use our Corresponding Angle Property. We have the transversal CA that cuts our two paralle lines. Hence, we can say that $\angle \mathrm{TCR} \cong \angle \mathrm{CAB}$.

Similarly, we have the transversal CB that cuts our two parallel lines. Hence we can also say that $\angle \mathrm{SCQ} \cong \angle \mathrm{CBA}$.

that $\angle \mathrm{ACB} \cong \angle \mathrm{SCT}$.
Putting these pieces together, the angles of our triangle equal

$$
\mathrm{m} \angle \mathrm{QCS}+\mathrm{m} \angle \mathrm{SCT}+\mathrm{m} \angle \mathrm{TCR}=180^{\circ}
$$

Since the sum of the angles in a triangle always adds up to 180°, we can next consider a quadrilateral, which is a simple polygon with 4 sides. This time, we can divide the quadrilateral into two triangles. The sum of the angles in each triangle is 180°, so the sum of the angles for the quadrilateral is 360°. Next we could consider polygons with even more sides. Can you guess what the sum of the degrees of all the angles in a polygon will be?
To think about these more complicated polygons, we introduce the idea of the "ears" of a polygon. An ear of a polygon is formed by two successive sides and a connecting

eventually we will partition our polygon into triangles. For example, the pentagon below is partitioned into 3 triangles as shown, while the hexagon is partitioned into 4 triangles.

To add up the measures of all of the angles in these polygons, we can add up the angles in all of the triangles. And as we have already seen, each triangle will contribute 180° to the total.

There is one part of this explanation that needs a little more discussion-namely how do you know that you can always find an "ear" in a simple polygon? Here is the clever idea that was first discovered by Gary Meisters in 1975. He proved the Two Ears Theorem, which says that any polygon with 4 or more sides always

overlapping ears. By non-overlapping, we mean that the ears do not intersect as shown in the pictures below:

> Overlapping ears overlapping ears

To see why this is true, begin with three successive points $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ in a polygon where the diagonal PR passes through the interior of the

polygon. If this forms an ear, then we have begun to reduce the problem. If not, we pick a vertex of the polygon inside $P Q R$ that is closest to point Q and connect it to Q, This will divide the polygon into two smaller polygons, each with fewer edges than before.

We can thus reduce the problem of finding lars wian an n-sided polygon to finding ears
 Texas Mathworks. He loves working on math problems!

We want to print your work! Send your original math games, puzzles, problems, and activities to Texas Mathworks, 601 University Dr., San Marcos, TX 78666

Word Search

Forwards or backwards, up, slanted, or down Where can the words in this puzzle be found?
Angle S UFSADCNJXUALD
Parallel K I B GUUOBTATGAO
Vertical N M Y U G R M R R H V C
Corresponding U I T L L Y E NHYYZMTA
C J ALEAOAKXBZVL
Polygon ERFRTINBRPDRUN
Triangle I P S I RMDMOA JMLV
Hypatia 1 A G G I N Z WLOF A
Y GWGOUIUMLFWEL

There are two motorboats on opposite sides of a river. They start moving
towards each
other, but at different speeds. When they pass each other the first time they are 700 yards from one shoreline. They continue to the opposite shore, turn around and start moving towards each other again. When they pass the second time, they are 300 yards from the other shoreline. How wide is the river?
*1. A structure is built with identical cubes. Figure 1 is the top view, Figure 2 is the front view and Figure 3 is the side view. What is the least number of identical cubes required to build this structure?

2. What is the difference between the sum of the first 30 even counting numbers and the sum of the first 30 odd counting numbers?
3. A storage tank is $1 / 4$ full. When 5 gallons are removed from the tank, the tank will be $1 / 5$ full. What is the capacity of the tank?

4.Three ducks and two ducklings weigh 32 kg . Four ducks and three ducklings weigh 44 kg . All ducks weigh the same and all ducklings weigh the same. What is the weight of two ducks and one duckling?
*5. In the following figure, $A B$ is a diameter of a circle with center C. Two semi-circles APC and CQB are drawn on AB. The circle PQR touches all the three semi-circles
If $A B=28 \mathrm{~cm}$, find the radius of the circle PQR.

*6. A positive number leaves a remainder of 1 when divided by 6,7 or 8 . It is divisible by 5 . Find the smallest possible value for this number
7. The edge of a cube is 8 cm . All the faces are painted orange. It is then cut into small cubes with an edge of 1 cm . How many small cubes have exactly two orange faces?
*8. If today were Sunday, July 18, 2004, which day of the week was January 1, 1999 ?

*9. Arrange the Natural Numbers $1,2,3,4, \ldots$ in the order as shown in the figure. The numbers $2,3,5,7,10, \ldots$ are called the "turning number", as the arrow-in and arrow-out of these numbers changes direction at the corner. How many "turning numbers" are there between 529 and 1000?
*These problems appeared in the 8th Primary Mathematics World Contest held in Hong Kong July 2004

