
Linear Algebra and its Applications 485 (2015) 442–453
Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

A characterization of oriented hypergraphic balance 

via signed weak walks

Vinciane Chen a, Angeline Rao a, Lucas J. Rusnak b,∗, Alex Yang a

a Texas State Mathworks, Texas State University, San Marcos, TX 78666, USA
b Department of Mathematics, Texas State University, San Marcos, TX 78666, 
USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 August 2014
Accepted 1 August 2015
Available online xxxx
Submitted by R. Brualdi

MSC:
05C50
05C65
05C22

Keywords:
Oriented hypergraph
Laplacian matrix
Balanced hypergraphs

An oriented hypergraph is a hypergraph where each vertex-
edge incidence is given a label of +1 or −1, and each adjacency 
is signed the negative of the product of the incidences. An ori-
ented hypergraph is balanced if the product of the adjacencies 
in each circle is positive.
We provide a combinatorial interpretation for entries of kth
power of the oriented hypergraphic Laplacian via the number 
of signed weak walks of length k. Using closed weak walks we 
prove a new characterization of balance for oriented hyper-
graphs and matrices that generalizes Harary’s Theorem for 
signed graphs.
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1. Introduction

An oriented hypergraph is a signed incidence structure where each vertex-edge inci-
dence is given a label of +1 or −1, and each adjacency is signed the negative of their 
incidence product. A signed graph is an oriented hypergraph where each edge is con-
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tained in at most two incidences, while a graph can be considered as a signed graph 
where all adjacencies are positive and each edge is contained in exactly two incidences. 
An oriented hypergraph is said to be balanced if the product of the adjacencies in each 
circle is positive. In Harary’s seminal paper on signed graphs in 1953 he provided the 
following equivalent condition for balance in signed graphs to model social interactions 
using signed paths:

Theorem 1.1. (See Harary [6].) A signed graph is balanced if, and only if, for each pair 
of vertices v and w all vw-paths have the same sign.

Harary’s Theorem is not true for hypergraphs with edges of size 3 or greater. We 
relax the path condition and provide a non-trivial oriented hypergraphic generalization 
of Harary’s Theorem.

The concept of a balance, as well as identifying equivalent conditions, is critical to the 
structure of many combinatorial optimization and programming, for a proper introduc-
tion see [4,10]. The (non-oriented) balanced hypergraph was introduced by Berge in 1970 
[1] as one of a number of different generalizations of bipartite graphs; this was further 
generalized to balanced {0, ±1}-matrices by Truemper in 1982 [13], and to incidence 
oriented hypergraphs by Shi in 1992 [12] and Rusnak in 2013 [9]. The benefit of working 
with the current oriented hypergraphic model is that it unifies Harary’s work on signed 
graphs with the current theory of balanced matrices, and provides a translation between 
many graphic, hypergraphic, and balanced matrix theorems.

It was shown by Fulkerson et al. [5] that the condition of balance in {0, 1}-matrices is 
equivalent to integrality of set covering, set packing, and set partitioning polytopes as well 
as total dual integrality of linear systems, these results were extended to {0, ±1}-matrices 
by Conforti and Cornuéjols in [2]. Berge also provided the following characterization 
of balance, which was also generalized to balanced {0, ±1}-matrices by Conforti and 
Cornuéjols in [2]:

Theorem 1.2. (See Berge [1].) A {0, 1}-matrix M is balanced if, and only if, every sub-
matrix of M is bicolorable.

These generalizations can be trivially incorporated into oriented hypergraphs by re-
garding the given matrix as the incidence matrix of an oriented hypergraph. However, 
a generalization of Harary’s Theorem would provide a characterization of balance via new 
hypergraphic structures and avoid examining matrices. A structural characterization of 
obstructions to balance was given by Truemper in [14], while Conforti, Cornuéjols, and 
Rao’s famous work [3] on recognizing balanced {0, 1}-matrices in polynomial time won 
the 2000 Fulkerson Prize. More recently balanced matrices were generalized to oriented 
hypergraphs to examine integrated circuits and various applications to VLSI via mini-
mization [11,12]. Additionally, the concept of balance is central to the characterization 
of the matroid structure of signed graphs [15–17] as well as oriented hypergraphs as 
introduced in [9].
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It was shown in [8] that many results from algebraic graph theory extend to incidence-
simple oriented hypergraphs using the oriented hypergraphic incidence, adjacency, de-
gree, and Laplacian matrices. The familiar Laplacian equation

L = HHT = D −A,

as well as the entries of Ak corresponding to signed k-walks, both hold for oriented 
hypergraphs. More importantly, it was shown that the entries of the Laplacian correspond 
the newly introduced concept of a signed weak 1-walk — a generalization of a walk 
that allows loop-like backsteps along the same incidence. Weak walks provide a unified 
combinatorial object to discuss the entries of any of the oriented hypergraphic matrices. 
It is important to note that in order to maintain consistency with matroid theoretic 
results from graph theory and signed graph theory the incidence and adjacency matrices 
may produce values of 0 for offsetting positive and negative incidences or adjacencies.

We provide three new results in this paper. First, we make a minor improvement to 
the results appearing in [8] by removing the requirement of incidence-simplicity, show-
ing that the entries of Ak correspond to signed k-walks in any oriented hypergraph. 
Second, we show that the entries of Lk correspond to signed weak k-walks, demon-
strating the combinatorial difference between the adjacency and Laplacian matrices is 
one of weakness in walks. Finally, we obtain an oriented hypergraphic generalization 
of Harary’s Theorem for signed graphs via self-intersecting weak walks, providing an 
equivalent characterization of balance for oriented hypergraphs.

2. Background

2.1. Oriented hypergraphs

For a broader introduction to the theory of oriented hypergraphs see [7–9]. An oriented 
hypergraph is a quadruple (V, E, I, σ) where V and E are the sets of vertices and edges, 
I is the set of incidences, and σ : I → {+1, −1}. The set of incidences is determined 
by a function ι : V × E → Z≥0, and an incidence is a triple (v, e, k), where v and e
are incident and k ∈ [ι(v, e)]; the value ι(v, e) is called the multiplicity of the incidence. 
An oriented hypergraph is incidence-simple if all incidence multiplicities are less than or 
equal to 1.

A weak walk is a sequence W̃ = a0, i1, a1, i2, a2, i3, a3, . . . , an−1, in, an of vertices, 
edges and incidences, where {ak} is an alternating sequence of vertices and edges, and 
ih is an incidence containing ah−1 and ah. The length of a weak walk is half the number 
of incidences in the weak walk. The sign of a weak walk W̃ is

sgn(W̃ ) = (−1)�n/2�
n∏

σ(ih).

h=1
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A vertex-walk is a weak walk where a0, an ∈ V , and i2h−1 �= i2h. This forbids the weak 
walk from entering an edge and immediately returning to the same vertex along the same 
incidence. A vertex-path is a vertex walk where no vertex or edge is repeated, while a 
circle is a vertex-path except a0 = an.

The number of weak walks of length k from vi to vj is denoted w̃(vi, vj ; k), the number 
of positive weak walks of length k is w̃+(vi, vj ; k), and the number of negative weak 
walks of length k is w̃−(vi, vj ; k), and let w̃±(vi, vj ; k) := w̃+(vi, vj ; k) − w̃−(vi, vj ; k). 
We use the analogous notation w(vi, vj ; k), w+(vi, vj ; k), w−(vi, vj ; k), and w±(vi, vj ; k)
to count walks. The concept of a weak walk was introduced in [8] to provide a unified 
combinatorial interpretation of the entries of the Laplacian of incidence-simple oriented 
hypergraphs.

2.2. Oriented hypergraphic matrices

Two, not necessarily distinct, vertices v and w are said to be adjacent with respect to 
edge e if there exist incidences (v, e, k1) and (w, e, k2) such that (v, e, k1) �= (w, e, k2). An 
adjacency is a quintuple (v, k1; w, k2; e) where v and w are adjacent with respect to edge 
e using incidences (v, e, k1) and (w, e, k2).

Given an adjacency (v, k1; w, k2; e) we define the sign of the adjacency as

sgne(v, k1;w, k2) = −σ(v, e, k1)σ(w, e, k2),

and we regard sgne(v, k1; w, k2) = 0 if v and w are not adjacent.
The adjacency matrix AG = [aij ] of an oriented hypergraph G is the V × V matrix 

whose (i, j)-entry is the sum of all signed adjacencies containing vertices vi and vj . That 
is,

aij =
∑
e;m,n

sgne(vi,m; vj , n) (2.1)

where the sum is over all edges e ∈ E and incidences (vi, e, m) �= (vj , e, n). Notice that two 
incidences (vi, e, m) and (vj , e, n) belonging to the adjacency (vi, m; vj , n; e) also belong 
to the adjacency (vj , n; vi, m; e), so clearly the adjacency matrix is symmetric. But most 
importantly, the diagonal entries of AG count adjacencies of the form (vi, m; vi, n; e)
separate from (vi, n; vi, m; e) when m �= n; moreover, if m = n the incidences are not in 
an adjacency.

The degree of a vertex v is the number of incidences containing vertex v. The degree 
matrix of an oriented hypergraph G is the diagonal matrix DG = [dij ] := diag(deg(v1),
. . . , deg(vn)), while the Laplacian matrix is defined as LG := DG−AG, and the incidence 
matrix HG = [ηij ] is the n ×m matrix defined by

ηij =
ι(vi,ej)∑

σ(vi, ej , k). (2.2)

k=1
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The following two theorems are strengthenings of the results in [8] by removing the 
condition of incidence-simplicity. The proofs are standard, but included for completeness.

Theorem 2.1. If G is an oriented hypergraph and k a non-negative integer, then the 
(i, j)-entry of Ak

G is w±(vi, vj ; k).

Proof. We prove this using mathematical induction.
If k = 0, then A0

G = I, or a 0-walk travels nowhere.
If k = 1, then 

(
A1

G

)
ij

= aij , where

aij =
∑
e;m,n

sgne(vi,m; vj , n)

=
∑
e;m,n

−σ(vi, e,m)σ(vj , e, n)

= w+(vi, vj ; 1) − w−(vi, vj ; 1) = w±(vi, vj ; 1).

We now suppose that 
(
Ak

G

)
ij

= w±(vi, vj ; k).
We calculate the (i, j)-entry of Ak+1

G as follows:

(
Ak+1

G

)
ij

=
(
AGA

k
G

)
ij

=
n∑

l=1

ail · w±(vl, vj ; k)

=
n∑

l=1

( ∑
e;m,n

sgne(vi,m; vl, n)
)

[w+(vl, vj ; k) − w−(vl, vj ; k)]

=
n∑

l=1

(w+(vi, vl; 1) − w−(vi, vl; 1))[w+(vl, vj ; k) − w−(vl, vj ; k)]

=
n∑

l=1

[w+(vi, vl; 1)w+(vl, vj ; k) + w−(vi, vl; 1)w−(vl, vj ; k)

− w−(vi, vl; 1)w+(vl, vj ; k) − w+(vi, vl; 1)w−(vl, vj ; k)].

The number of positive walks of length k+1 from vi to vj with vl as the second vertex is

w+(vi, vl; 1)w+(vl, vj ; k) + w−(vi, vl; 1)w−(vl, vj ; k),

while the number of negative walks of length k + 1 from vi to vj with vl as the second 
vertex is

w−(vi, vl; 1)w+(vl, vj ; k) + w+(vi, vl; 1)w−(vl, vj ; k).

Since any walk of length k + 1 from vi to vj must have one of the vertices v1, v2, . . . , vn
as its second vertex, we have
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w+(vi, vj ; k + 1) =
n∑

l=1

[
w+(vi, vl; 1)w+(vl, vj ; k) + w−(vi, vl; 1)w−(vl, vj ; k)

]
,

w−(vi, vj ; k + 1) =
n∑

l=1

[
w−(vi, vl; 1)w+(vl, vj ; k) + w+(vi, vl; 1)w−(vl, vj ; k)

]
,

and the (i, j)-entry of Ak+1
G simplifies to

w+(vi, vj ; k + 1) − w−(vi, vj ; k + 1) = w±(vi, vj ; k + 1).

Completing the proof. �
Theorem 2.2. If G is an oriented hypergraph, then LG = HGHT

G.

Proof. Observe that the (i, j)-entry of HGHT
G corresponds to the ith row of HG multiplied 

by the jth column of HT
G, where vi, vj ∈ V . Therefore, this entry is

|E|∑
l=1

ηi,lηj,l =
|E|∑
l=1

[ ι(vi,el)∑
M=1

σ(vi, el,M)
][ ι(vj ,el)∑

N=1
σ(vj , el, N)

]

=
|E|∑
l=1

[ ι(vi,el)∑
M=1

ι(vj ,el)∑
N=1

σ(vi, el,M)σ(vj , el, N)
]

=
|E|∑
l=1

[ ι(vi,el)∑
M=1

ι(vj ,el)∑
N=1

−sgnel
(vi,M ; vj , N)

]
Case 1: If i = j we break the sum into parts where M = N and M �= N .

=
|E|∑
l=1

[ ι(vi,el)∑
M=1

ι(vi,el)∑
N=1

σ(vi, el,M)σ(vi, el, N)
]

=
|E|∑
l=1

[ ι(vi,el)∑
M=1,
N=M

(σ(vi, el,M))2
]
+

|E|∑
l=1

[ ι(vi,el)∑
M=1,
M �=N

ι(vi,el)∑
N=1

σ(vi, el,M)σ(vi, el, N)
]

=
|E|∑
l=1

[ ι(vi,el)∑
M=1,
N=M

(σ(vi, el,M))2
]
+

|E|∑
l=1

[ ι(vi,el)∑
M=1,
M �=N

ι(vi,el)∑
N=1

−sgnel
(vi,M ; vi, N)

]
= deg(vi) − aii

Notice that if M = N then the inner sums merge and (σ(vi, el,M))2 = 1, and we 
count the number of incidences containing vi and el over all possible edges el, and get 
deg(vi). However, if M �= N then we count all −sgne (vi, M ; vi, N) over all adjacencies 
l
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from vi to vi within edge el and sum over all possible edges, and get −aii. Thus the 
(i, i)-entry of HGHT

G is deg(vi) − aii.
Case 2: If i �= j the sum simplifies as

=
|E|∑
l=1

[ ι(vi,el)∑
M=1

ι(vj ,el)∑
N=1

σ(vi, el,M)σ(vj , el, N)
]

=
|E|∑
l=1

[ ι(vi,el)∑
M=1

ι(vj ,el)∑
N=1

−sgnel(vi,M ; vj , N)
]

= −aij

Thus the (i, j)-entry of HGHT
G is −aij .

Comparing entries we have HGHT
G = DG −AG = LG. �

3. Weak walk matrices

Let A1, A2 ∈ {V, E} and W̃(G,A1,A2,k) = [w̃ij ] be the A1 × A2 matrix where w̃ij =
w̃±(ai, aj ; k). The matrix W̃(G,A1,A2,k) is called the weak k-walk matrix of an oriented 
hypergraph G. We will assume that A1 = A2 = V and only consider weak vertex-walks. 
It was shown in [8] that weak 1-walks count the entries of the Laplacian, as given by the 
following theorem and lemma.

Theorem 3.1. (See Reff and Rusnak [8].) If G is an oriented hypergraph, then LG =
−W̃(G,V,V,1).

We define the k-walk matrix W(G,A1,A2,k) = [wij ] similar to the weak k-walk ma-
trix except wij = w±(ai, aj ; k) and we get the following immediate reformulation of 
Theorem 2.1.

Lemma 3.2. (See Reff and Rusnak [8].) If G is an oriented hypergraph, then
W(G,V,V,k) = Ak

G.

While signed walk counts and powers of the adjacency matrix are related by the 
previous lemma, we provide a new relationship linking signed weak walk counts to powers 
of the Laplacian matrix.

Theorem 3.3. If G is an oriented hypergraph, then W̃ k
(G,V,V,1) = W̃(G,V,V,k) = (−1)kLk

G.

Proof. We prove the second equality via mathematical induction similar to Theorem 2.1. 
The first equality is similar.

If k = 0, then L0
G = I, or a weak 0-walk travels nowhere.

If k = 1, then LG = −W̃(G,V,V,1) from Theorem 3.1.
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We now suppose that 
(
Lk
G

)
ij

= (−1)k · w̃±(vi, vj ; k).
We calculate the (i, j)-entry of Lk+1

G as follows:

(
Lk+1
G

)
ij

=
(
LGL

k
G

)
ij

=
n∑

l=1

(−1)1 · w̃±(vi, vl; 1) · (−1)k · w̃±(vl, vj ; k)

= (−1)k+1
n∑

l=1

[w̃+(vi, vl; 1)w̃+(vl, vj ; k) + w̃−(vi, vl; 1)w̃−(vl, vj ; k)

− w̃−(vi, vl; 1)w̃+(vl, vj ; k) − w̃+(vi, vl; 1)w̃−(vl, vj ; k)].

The number of positive weak walks of length k + 1 from vi to vj with vl as the second 
vertex is

w̃+(vi, vl; 1)w̃+(vl, vj ; k) + w̃−(vi, vl; 1)w̃−(vl, vj ; k),

while the number of negative weak walks of length k + 1 from vi to vj with vl as the 
second vertex is

w̃−(vi, vl; 1)w̃+(vl, vj ; k) + w̃+(vi, vl; 1)w̃−(vl, vj ; k).

Summing these positive and negative weak walks over all possible second vertices we 
have:

w̃+(vi, vj ; k + 1) =
n∑

l=1

[
w̃+(vi, vl; 1)w̃+(vl, vj ; k) + w̃−(vi, vl; 1)w̃−(vl, vj ; k)

]
,

and

w̃−(vi, vj ; k + 1) =
n∑

l=1

[
w̃−(vi, vl; 1)w̃+(vl, vj ; k) + w̃+(vi, vl; 1)w̃−(vl, vj ; k)

]
.

Thus, the (i, j)-entry of Lk+1
G simplifies to

(−1)k+1 · [w̃+(vi, vj ; k + 1) − w̃−(vi, vj ; k + 1)] = (−1)k+1 · w̃±(vi, vj ; k + 1).

Completing the proof. �
Relating weak walks back to the incidence matrix we have the following known result:

Lemma 3.4. (See Reff and Rusnak [8].) If G is an oriented hypergraph, then
W̃(G,V,E,1/2) = HG.

The importance of Theorem 3.3 is when coupled with the results from [8] we see 
that the entries of the degree, adjacency, incidence, and Laplacian matrices can all be 
interpreted using weak walks.
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4. Balance and a Harary-type theorem

4.1. Definitions and background

Recall that an oriented hypergraph is balanced if the sign of all circles are positive. 
Harary’s theorem tells us that a signed graph is balanced if, and only if, all vw-paths 
have the same sign. However, Harary’s theorem fails immediately if we allow edges of 
size 3 or greater, as indicated in the following figure:

Fig. 1. A balanced oriented hypergraph where the two vw-paths have different signs.

In Fig. 1 we see that the oriented hypergraph is balanced as the only circle v, e1, v1, e2,

v2, e3, v is positive. However, the vw-paths P1 = v, e1, v1, e2, w and P2 = v, e3, v2, e2, w
have sgn(P1) = +1 and sgn(P2) = −1. Clearly there is an issue using the extra incidence 
between e2 and w as it is reused when connecting the two paths. To incorporate this 
phenomenon into the Harary’s theorem we need to examine weak walks, but before we 
do this we need to collect some definitions and known results from [9] for balancing 
obstructions in oriented hypergraphs.

The oriented incidence graph of an oriented hypergraph G = (VG, EG, IG, σ) is the 
oriented bipartite graph ΓG with vertex set VΓ = VG ∪ EG, edge set EΓ = IG and 
orientation function σ.

Lemma 4.1. (See Rusnak [9].) W̃ is a weak walk of G if, and only if, W̃ is a walk in ΓG.

A theta graph is a set of three internally disjoint paths with the same end-points. 
A vertex-theta-graph is a theta graph whose end-points are vertices, an edge-theta-graph
is a theta graph whose end-points are edges, and a cross-theta-graph is a theta graph 
whose end-points consist of one vertex and one edge. This is shown in Fig. 2.
Fig. 2. Hypergraphs that contain a vertex-theta, edge-theta, and cross-theta, respectively.
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Clearly, the paths of a theta graph form three internally disjoint paths in the bipartite 
incidence graph and we have the following result.

Lemma 4.2. G is cross-theta-free if, and only if, there are no chordal paths of odd length 
in ΓG.

An oriented hypergraph is balanceable if there are incidences that can be negated so 
that the resulting oriented hypergraph is balanced, while an oriented hypergraph that is 
not balanceable is said to be unbalanceable. We know the following:

Theorem 4.3. (See Rusnak [9].) An oriented hypergraph G is balanceable if, and only if, 
it does not contain a cross-theta.

Observe that the underlying hypergraphic structure of balanced and balanceable ori-
ented hypergraphs are identical and they only differ by incidence orientations, so a 
balanced oriented hypergraph is cross-theta-free.

4.2. Self-intersection and defect

Given weak walk W̃ define the self-multiplicity of incidence i in W̃ , denoted m(i; ̃W ), 
as the number of times incidence i appears in weak walk W̃ . Note that self-multiplicity is 
not oriented hypergraphic incidence multiplicity, as oriented hypergraphs allow multiple 
distinct incidences of the form (v, e, k1) and (v, e, k2) that are only equal only when 
k1 = k2. Self-multiplicity counts the number of times a specific incidence i = (v, e, k)
appears in a weak walk.

Define the self-intersection number of weak walk W̃ as

γ
W̃

:=
∑
i∈I

W̃

⌊
m(i; W̃ )

2

⌋
.

The self-intersection number increases by 1 for every two times an incidence occurs in a 
weak walk. The defect of weak walk W̃ is defined as

δ
W̃

:= (−1)γW̃ .

Theorem 4.4. The sign of a closed weak walk in a balanced oriented hypergraph is its 
defect δ

W̃
.

Proof. Let G be a balanced oriented hypergraph whose bipartite incidence graph is Γ, 
and let W̃ be a closed weak walk in G.

Observe that if any subset of W̃ forms a circle C then sgn(W̃ ) = sgn(W̃�C) since G is 
balanced and the sign of every circle is positive. Thus, we may sequentially remove circles 
from W̃ resulting in a collection of circle-free weak walks X where sgn(W̃ ) = sgn(X).
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We know from Lemma 4.1 that W̃ is a closed walk in the bipartite incidence graph Γ, 
so each incidence of X (an edge in Γ) must appear an even number of times in X. 
Let these multiplicities be 2α1, 2α, . . . , 2αk, and let α := α1 + α2 + . . . + αk. From the 
definition we have sgn(W̃ ) = sgn(X) = (−1)α.

However, the self-intersection number γ counts all repeated incidence pairs of W̃ so 
we now examine the γ − α uncounted repeated incidence pairs of W̃ belonging to the 
removed circles. Regard these circles as circles in the bipartite incidence graph Γ, so 
each incidence in G is an edge in Γ. When two circles C1 and C2 are removed that 
contain common incidences either C1 = C2, or the incidences of C2�C1 can be regarded 
as the edges of chordal paths to C1 in Γ. If C1 = C2 then they each contain an even 
number of incidences since Γ is bipartite. However, if the circles are distinct we know 
from Lemma 4.2 that all chordal paths have even length in Γ, and since Γ is bipartite 
and C2 has even length C1 ∩ C2 must consist of an even number of edges in Γ, that is, 
C1 ∩ C2 contain an even number of incidences in G.

Thus, γ−α is even and α ≡ γ mod 2, so (−1)α = (−1)γ , and the theorem is proved. �
Using Theorem 4.4 along with the observation that a circle has a self-intersection of 

0 and has a defect +1 we have the following theorem:

Theorem 4.5. An oriented hypergraph is balanced if, and only if, the sign of each closed 
weak walk is equal to its defect.

This gives us Harary’s Theorem as a corollary.

Corollary 4.6. A signed graph is balanced if, and only if, for each pair of vertices v and 
w all vw-paths have the same sign.

Proof. Let P1 and P2 be two paths between vertices v1 and v2 in a balanced signed 
graph G. Regard P1 ∪P2 as a closed (non-weak) walk W since P1 and P2 are paths and 
the only edges appearing in a path in a signed graph are 2-edges. Observe that every 
incidence i that appears in a path must include the other unique incidence i′ belonging 
to their common 2-edge, so if an incidence i appears in both P1 and P2 so must i′. Thus, 
γW is even, δW = +1, and

sgn(P1) · sgn(P2) = sgn(W ) = δW = +1.

So, sgn(P1) = sgn(P2).
To see the converse, decompose every circle into two internally-disjoint vw-paths for 

some v and w in each circle and use the assumption that for each pair of vertices v and w
all vw-paths have the same sign, so each circle must be positive, and G is balanced. �

Returning to Fig. 1 we know that paths P1 = v, e1, v1, e2, w and P2 = v, e3, v2, e2, w
combine to form a negative closed weak walk W̃ = v, e1, v1, e2, w, e2, v2, e3, v; incidences 
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are omitted since the hypergraph is incidence-simple. This weak walk contains the inci-
dences of circle v, e1, v1, e2, v2, e3, v which is positive, as well as the repeated incidence 
between w and e2. Since there is one repeated incidence we have γ

W̃
= 1 and the sign 

of W̃ is (−1)1.
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