
Goldbach’s Pigeonhole
Edward Early, Patrick Kim, and Michael Proulx

Edward Early (edwarde@stedwards.edu) received his Ph.D. from the
Massachusetts Institute of Technology. He is an associate professor of mathematics
at St. Edward’s University in Austin, TX. His research is mostly in combinatorics, but
he enjoys dabbling in number theory. He also likes spending time with his family and
training in martial arts. Patrick Kim (musicpjkim@gmail.com) is a senior at Stanford
University majoring in materials science and music. His interests lie in multifunctional
nanoparticles along with phase-change materials. He is an avid pianist and violinist,
spending many hours playing chamber music. In his free time, Patrick enjoys
swimming, playing Ultimate, and hungrily watching the Food Network late at night.
Michael Proulx (michaelproulx@college.harvard.edu) is a senior at Harvard College
whose research interests include analytic number theory and low-dimensional
topology. Aside from mathematics, Michael enjoys backpacking and mountaineering;
he is also a lifelong student of Go.

The Goldbach conjecture was first proposed in a 1742 letter from German mathe-
matician Christian Goldbach to Swiss mathematician Leonhard Euler [1]. In the letter,
Goldbach proposed to his colleague that every even integer greater than 2 can be ex-
pressed as the sum of two primes, a hypothesis known today as Goldbach’s strong
conjecture or simply Goldbach’s conjecture. There are many variations and related
problems, including connections to the Riemann hypothesis, which have attracted the
attention of numerous mathematicians over the years [2, 4].

Is it possible that the pigeonhole principle could give an easy proof of Goldbach’s
conjecture? It turns out there are hundreds of integers for which we can prove the
existence of two such primes nonconstructively via the pigeonhole principle. It does
not always work, but how do we know when we have found all the cases for which it
does? The answer turns out to be a nice application of asymptotic formulas, or very
scary-looking formulas for complicated functions that actually turn out to be easy to
use with a little modification. A little computer programming then finishes off the
argument.

Some number theory and bounds
A Goldbach partition is an expression of a given even integer n as the sum of two
primes. We will use three number-theoretic functions. Euler’s totient function ϕ(n)

denotes the number of positive integers less than or equal to and relatively prime to n.
It can be computed via the formula ϕ(n) = n · ∏p|n(p − 1)/p [3]. The prime counting
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function π(n) denotes the number of primes less than n, and ω(n) denotes the number
of distinct prime factors of n. Throughout, we shall use n to denote a positive even
integer and p to denote a prime. Our work focuses on relating ϕ(n) and π(n) to satisfy
the conditions for a particular counting argument.

In 1962, Rosser and Schoenfeld improved the asymptotic estimates and bounds
of several functions that are pertinent to our work [5]. Specifically, they derived the
following upper bound for π(n) and lower bound for ϕ(n).

Theorem 1. For n > 1,

π(n) <
n

ln(n)

(
1 + 1.5

ln(n)

)
. (1)

Theorem 2. For n > 3,

ϕ(n) >
n

eγ ln(ln(n)) + 2.5
ln(ln(n))

(2)

except when n = 223,092,870, in which case

ϕ(n) >
n

eγ ln(ln(n)) + 2.50637
ln(ln(n))

, (3)

where γ ≈ 0.577216 is Euler’s constant.

The pigeonhole principle is a standard counting argument that states that if n items
(pigeons) are placed into m containers (holes) where n > m, then at least one container
must contain more than one item.

We do not purport to prove Goldbach’s conjecture; rather, we explore an interesting
approach to the conjecture using the pigeonhole principle. We use the term pair to
refer to a set of two positive integers that sum to a given even integer n. By expressing
each n as a list of distinct pairs, we can prove the existence of a Goldbach partition
if we can demonstrate that there are more primes (pigeons) than pairs (pigeonholes).
We would like to remove all pairs composed of two composites, but this seems too
difficult to count rigorously. However, pairs can be removed when the two numbers
are not relatively prime, which will be related to ϕ(n), and there are π(n) − ω(n)

primes to consider.
After demonstrating that we can verify the conjecture for certain values of n us-

ing the pigeonhole principle, we prove that n = 90,090 is the greatest value that this
method can support.

Placing the primes into the pairs
We begin with the observation that any n satisfying ϕ(n)/2 < π(n) − ω(n) must have
a Goldbach partition.

Consider n = 20; the pairs are {1, 19}, {2, 18}, {3, 17}, {4, 16}, . . . , {10, 10}.
The length of this list can then be reduced to ϕ(n)/2 by removing pairs that are not

relatively prime to n. The key observation here is that if a and b are integers such that
a + b = n, then a and b are relatively prime if and only if they are each relatively prime
to n. This is true because any common factor of a and b will also divide a + b = n,
and any common factor of a and n will also divide n − a = b. In our example, we see
that there are four remaining pairs, {1, 19}, {3, 17}, {7, 13}, {9, 11}.
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Next, we count the number of primes less than and relatively prime to n = 20, given
by π(n) − ω(n). There are six such primes, 3, 7, 11, 13, 17, and 19. Therefore, by the
pigeonhole principle, at least one pair must comprise two primes, thus there is at least
one Goldbach partition of 20 (in fact, there are two).

More generally, n has at least π(n) − ω(n) − ϕ(n)/2 Goldbach partitions.
The inequality can be computed easily using Mathematica, Maple, Sage, etc. We

leave the details to the reader. This could also be the basis for an exercise in any class
involving discrete mathematics and some computer programming.

For n < 100 we can thus verify Goldbach’s conjecture for all n other than 4, 6, 10,
58, 82, 86, 92, and 94. Even though the method fails for some small values of n, it
works for some larger numbers such as 53,130, 60,060, 78,540, and 90,090. Because
π(n) − ω(n) is a relatively predictable function, whether this pigeonhole argument
will work when applied to a given n is largely dependent on the totient function.

More specifically, values of n with many distinct prime factors will generally have
lower values of ϕ(n) than nearby values of n with few distinct prime factors. Because
π(n) is monotonically increasing and ω(n) is small relative to n, numbers with lower
values of ϕ(n) are more likely to work with the pigeonhole argument and numbers
with higher values of ϕ(n) are more likely to fail the pigeonhole argument.

When the Goldbach pigeonhole method stops working
There are some special cases where the list of pigeonholes may be reduced, extending
the argument to more values of n. For example, if n − 1 is composite, then {1, n − 1}
can be removed from the list of pairs without decreasing the number of primes appear-
ing in the pairs. While it may be possible to efficiently implement more such refine-
ments to extend the applicability of the argument, our focus for now is on analyzing
the pigeonhole process without any such enhancements. As it is, the method can be
used to verify Goldbach’s conjecture nonconstructively for 586 values of n ranging
from 12 to 90,090. Our main result is that the method does not work for any larger
value.

Theorem 3. If n > 90,090, then ϕ(n)/2 > π(n) − ω(n), thus the above approach
with the pigeonhole principle cannot be used to verify Goldbach’s conjecture for n.

A graph provides insight into how to proceed. Figure 1 shows the graph of ϕ(n)/2
for even values of n as a jagged area, which is actually a very rapidly and irregularly
oscillating curve (though the function is discrete, consecutive points have been con-
nected for the purpose of graphing). There are three other curves shown. The one that
starts the lowest and ends the highest is the lower bound on this function from (2). The
curve that ends the lowest is π(n), and the remaining curve is the upper bound on π(n)

from (1). We can see the lower bound of ϕ(n)/2 surpassing the upper bound of π(n)

at n ≈ 210,000 (the precise value is 210,909).

Proof. Comparing inequalities (1) and (2), we want to prove that, for n sufficiently
large,

n

2
(

eγ ln(ln(n)) + 2.5
ln(ln(n))

) >
n

ln(n)

(
1 + 1.5

ln(n)

)
,
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Figure 1. Comparison of the bounds

equivalently

ln(n) > 2

(
1 + 1.5

ln(n)

)(
eγ ln(ln(n)) + 2.5

ln(ln(n))

)
. (4)

Assume n > 210,000 and n �= 223,092,870. Since the right-hand side of (4) is
difficult to work with, we sacrifice some precision for the sake of simplicity. It is easily
verified that

1.5

ln(n)
<

1

8
,

2.5

ln(ln(n))
< 1, eγ <

9

5
.

These substitutions yield
(

1 + 1.5

ln(n)

)
· 2

(
eγ ln(ln(n)) + 2.5

ln(ln(n))

)
<

81

20
ln(ln(n)) + 9

4
,

so it will suffice to prove that

ln(n) >
81

20
ln(ln(n)) + 9

4
. (5)

Let f (n) = ln(n) and g(n) the right-hand side of (5). Both f (n) and g(n) are con-
tinuous and monotonically increasing functions on the positive reals. The two func-
tions appear to cross twice, once at n ≈ 2 and again at n ≈ 260,202. We therefore
want to confirm that the two functions do not intersect anywhere after n = 260,202.
To this end, it will suffice to show that f ′(n) > g′(n) for n > 260,202 since f is then
both greater than and increasing faster than g.
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Now, f ′(n) = 1/n and g′(n) = 81/(n ln(n)), thus f ′(n) > g′(n) whenever
ln(n) > 81/20, or n > e81/20 ≈ 57.397457. This establishes (5) and hence (4) for
n > 260,202.

Since inequality (2) does not apply when n = 223,092,870, we could modify the
argument using (3), or simply observe that ϕ(223,092,870)/2 = 18,247,680 is greater
than π(223,092,870) = 12,283,531.

To complete the proof, we ran a computer search to verify that there are no values
of n between 90,092 and 260,202, inclusive for which the method works.
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Summary. Goldbach’s conjecture states that every even integer greater than two can be writ-
ten as the sum of two primes. For some even integers, we can prove the existence of two such
primes nonconstructively via the pigeonhole principle. Using a computer search and asymp-
totic bounds on classic number-theoretic functions, we determine the greatest value for which
this approach works.
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