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ARITHMETIC AND GEOMETRIC MEAN

WILLIE YONG* AND MAX WARSHAUER'

Consider the following problem:

Among all rectangles with a given perimeter, find the rectangle with the
largest area?

If we draw a rectangle, we can label the sides as z; and z;. The perimeter
P is then P = 2(z; + z3). With a little experimentation, we might guess
that the rectangle with largest area occurs when z; = z; = —, i.e. that the

answer is a square. How can we prove this? Algebraically, we must show that
for any choice of variables z; and z3, subject to the condition P = 2(z1 +z2),
we will have condition (1) below:

P 2
<\|— :
12 & (4) (1)
Substituting, we obtain equation (2)
2(z1 +72) \
i (Rt z)’ 0

Simplifying, this becomes
42129 < (21 + 22)*
0< :c% — 2z119 +x§
0 < (21 — 22)°
which is true! Note that we have equality if and only if z; = z3. Equation

(2) above can be rewritten as (3)

vam < Btm) 3)

We call the quantity on the left the geometric mean, G, of z; and z3, and
the quantity on the right the arithmetic mean, M. In words, we have proved
that the geometric mean G of two numbers z;, 7o is always less than or
equal to the arithmetic mean M with equality if and only if z; = z,.
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A slightly different proof of this important fact can be given as follows. Fix
a quantity P, and pick any two numbers z; and z, satisfying P = 2(z +x5).
We now want to make the quantity z;z, as large as possible.

Ty+z P

Now let’s think about the arithmetic mean, M = = —. Geomet-

2
rically, M is the midpoint of ; and z,. We let d be the distance from the

e = . T —T
midpoint to either z; or z3. Assume z; > T9,s0d = (1—212 . Observe
that

T1=M+d,
$2=M—d.

Hence

2
12y = (M +d)(M —d) = M? — 4% = (-{;) -d?.

Observe that the right hand side of this equation is the difference of two
squares, and the conditions of our problem state that P is constant. Hence,
the largest possible value of 7,25 will occur when d — 0, i.e. when z; = z, .
We write this as an inequality:

P 2 P 2
= (5) e (2)"

Taking square roots, we have
P
G=\1$1$25 Z:M
As an exercise, let’s use the above method to generalize these ideas to
more than two quantities. We define the arithmetic mean, M, of quanti-
ties z1,x9,...,z, by
Z1+Za+---+zy
n

M =

and the geometric mean, G , by

G= Yzizs... 2,

where we assume that all the quantities are positive.

The analogous problem is to fix the sum S = 2, 4+ 2o+ - -+ Ip, and try to
find the maximum value of the product Q = z1z9...7,. We want to show
that the maximum value of Q occurs when Ty = X9 =---=1,. Now observe
that in this case, the geometric mean G is equal to the arithmetic mean M.
In other words, the maximum value of the geometric mean will always be
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By the Arithmetic Lemma, it follows that

i g 1
V =3m2R 23(1_@

h h

) _(27rR3) (4) = 7rR3 Q.E.D.

As a second example, consider the problem below:

1
What is the minimum value of (a + b+ ¢) (l + % - —)?
a c

1
Using the fact that M > G, we obtain a + b+ ¢ > 3Vabe and =k % +% >
sf111
abc

Multiplying these together,

(a+b+c)(% El, )>3\/_3\/; 9

with equality only when a = b=c.

The arithmetic mean also has an interesting minimum property. Namely,
if we make measurements z,,zs,..., Ty, the question is what is the actual
best value we should accept for the quantity we are trying to measure? One
way to look at this problem, following Gauss [1], [2, p. 365], is to try to
determine a quantity @ with the property that the sum of the square of the
deviations (Q — z1)? + (Q — z2)® + --- + (Q — z,)? is as small as possible.
We claim that then the optimal value of @ is the arithmetic mean. To prove
this, write Q@ — z; = (M — z;) + (Q — M) where @ is any value we accept
for our measurement, and M is the arithmetic mean of the observed values.
Then

Q-z:)>=(M—z)> +(Q—M)* +2(M — z;)(Q — M).

Summing these equations, we note that the last terms sum to 0, because
2(Q—-M)(nM —z1 —z3 — - -+ — z,) = 0 by definition of M.
Hence the sum of these equations becomes

Q-2+ (Q@—m2)° +-- + (Q—z,)?
= (M= 21)? 4+ (M = )2 +n(Q — M.
This shows that
Q@-21)2+ Q-2+ +(Q=2a)2 > (M —21)% + -+ + (M — z,)?

with equality if and only if Q = M.
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