JOURNAL OF ALGORITHMS 7, 270-276 (1986)

Conway’s Parallel Sorting Algorithm
MaX L. WARSHAUER

Department of Mathematics and Computer Science, Southwest Texas State University,
San Marcos, Texas 78666

Received September 1, 1984

We analyze a parallel processor composed of (N — 1) finite state machines which
is used to sort N keys. In one “cycle,” comparisons and exchanges are made
between pairs of adjacent keys. We show that the keys will be sorted after at most
(2N — 3) cycles. ® 1986 Academic Press, Inc.

The parallel processor we will study was suggested by Conway and
communicated to the author by Early. It consists of (N — 1) finite state
machines which are used to sort N keys, K, K,,..., K, stored as m-bit
binary words. The ith finite state machine FSM, (see Fig. 1) is responsible
for comparing the ith and (i + 1)th words.

On a given cycle, FSM; will do one of two things:

1. Swap Word; and Word, , ;
2. Not swap Word, and Word,, ,.

If either FSM,, , or FSM,_, assumes the swap state on a given cycle, then
FSM, must assume the no swap state because a given word can only swap
with one neighbor on a given cycle.

A cycle is composed of m phases, one phase for each bit of the words
being compared. On the first phase of a given cycle the largest bit of Word,
is sent to FSM, and FSM,_,. Word, only sends a bit to FSM,_, and
Word, only sends a bit to FSM,.

Let us begin by analyzing the ith finite state machine FSM; which has
received the leading bits from Word,,, and Word,. FSM, can assume one
of three states: the no swap state denoted N,, the swap state denoted S,, or
the undecided state denoted U.. Initially all FSM, are in state U,. During a
phase of a cycle each FSM, receives a new bit Bit, from Word, and Bit,

270

0196-6774,/86 $3.00
Copyright © 1986 by Academic Press, Inc.
All rights of reproduction in any form reserved.

CONWAY’S PARALLEL SORTING ALGORITHM 271

' Word; ;¢
FSM;
A Word;
FIGURE 1

from Word, . ,, and then changes its state according to the following:

Old state New state
N, N,
S; S;
U (a) If §,_, or S, ., 0r

if Bit,, ; > Bit;, then N,
else (b) If Bit, > Bit,, , then S;
else (¢) U

On each successive phase, FSM, will receive the next largest bits of words
Word, ., and Word,. As long as FSM, is in the undecided state U, all
previous bits of words Word,,, and Word, are identical. Upon receiving
the new bits, FSM, will assume a new state according to the criteria
described above.

Thus, Word, , , and Word, will circulate in place as long as the finite state
machines FSM, , ;, FSM,, and FSM,_, are in the undecided state. If FSM,
ever assumes the swap state S, then successive bits of Word,,, and Word,
are swapped. Swapping these remaining bits will interchange Word, , , and
Word,, since the earlier bits are all equal.

The reader should observe that if FSM,; assumes the swap state on a given
phase then it is not possible for either FSM,,, or FSM,_, to also assume
the swap state on the same phase. This is because if FSM; assumes the swap
state then Bit,,, from Word,_, in the higher position must be a 0, and Bit,
from Word, in the lower position must be a 1. However, Word, , is the
word in the lower position for FSM,, ; and Word, is the word in the higher
position for FSM,_;. Consequently neither FSM, , ; nor FSM,_, could meet
the criteria to assume the swap state on this phase. Further, if FSM,
assumes the swap state S, then it sends this message to both FSM, ; and
FSM, _, so that both of these finite state machines will assume the no swap
state N, in the next phase. This is because Word, , ; and Word, can only be
swapped by one finite state machine during a given cycle.

The question we examine is how many cycles this process requires to
ensure that the keys are arranged in descending order. This provides a

247 74 MAX L. WARSHAUER

natural measure of the *time complexity” for a parallel processor which can
make comparisons simultaneously.

Let us establish some notation. We denote the keys by K, K,,..., Ky.
Let K,(s) denote the position of key K, after cycle s. Our sorting procedure
is finished after cycle s provided

K.(s) > K,(s) whenever K, > K.
We thus think of the positions as “going up,” pictorially:
Position N
Position N — 1
Position 1.

The sorting places higher values in higher numbered positions. We shall
make the convention that positions N + 1, N + 2,... are filled by +eo,
and positions 0, —1,... are filled by —oc. With this convention, we can
now make a definition:

DEFINITION 1. We say that key K, is attractive up after cycle s if either
of the following conditions is satisfied:

Condition 1. The key in position K;(s) + 1 is larger than K.
Condition 2. The key in position K,;(s) + 2 is larger than K,

Following our convention, it follows that if key K is in either position N or
position (N — 1) then K, is attractive up. Similarly we define:

DEFINITION 2. We say that key K, is attractive down after cycle s if
either of the following conditions is satisfied:

Condition 1. The key in position K,(s) — 1 is smaller than K.
Condition 2. The key in position K,;(s) — 2 is smaller than K,.

LEMMA 1. Suppose key K, is attractive up (resp. down) after cycle s.
Then key K, is attractive up (resp. down) after each cycle t > 5.

Proof. There are three types of moves key K, can make on cycle 1.

(1) Move down. K, swaps with the key immediately below itself, so
K()y=K,(t—-1)—-1

(2) Move up. K, swaps with the key immediately above itself, so
K(t)y=K,(t—1)+ 1

(3) Stationary. K, does not move on cycle ¢, so K,(¢) = K,(t — 1).

CONWAY'S PARALLEL SORTING ALGORITHM 273

We examine each of these cases. If key K, makes a move down on cycle 7,
then the key in position K,(r — 1) — 1 is larger than K,. After cycle ¢ this
key will be immediately above K; in position K,(r) + 1 after cycle r.
Consequently Condition 1 of Definition 1 will be satisfied and K, will be
attractive up after cycle «.

Next assume that K, is attractive up after cycle (1 — 1) and makes a
move up on cycle t. Then clearly Condition 2 of Definition 1 must
have been satisfied after cycle (¢ — 1). Now examine the key in position
K,(t — 1) + 2 (if any). This key is larger than K. It cannot move down on
cycle ¢, since K; makes a move up. If this key makes a move up on cycle ¢,
then Condition 2 will still be satisfied after cycle . If this key remains
stationary on cycle ¢, then Condition 1 will be satisfied after cycle ¢. In any
case, K, will remain attractive up after cycle 1.

Finally assume that K, is attractive up after cycle (¢ — 1) and makes a
stationary move on cycle . If Condition 1 is satisfied after cycle (r — 1)
then clearly K, will remain attractive up after cycle 7. Thus we examine the
case that Condition 2 is satisfied and Condition 1 is not satisfied. The keys
are then arranged as follows:

The key K, in position K;(7 — 1) + 1 is smaller than K.

The key K, in position K, (¢ — 1) + 2 is larger than K.
With this arrangement of keys, K, will necessarily swap with K; on cycle 7,
i.e., K, will not remain stationary on cycle ¢, a contradiction. Hence, in any

case, if K, is attractive up on cycle (7 — 1), then K, will remain attractive
up after cycle 7.

Observe that we have also shown:

COROLLARY 2. If key K, moves down on cycle t, then key K, will be
attractive up at each cycle s > t.

Since the same proof works for attractive down, we may also state

COROLLARY 3. If a key K; moves up on cycle t, then key K, will be
attractive down at each cycle s > 1.

Let [j/2] denote the greatest integer less than or equal to j/2. We now
may state:

LEMMA 4. Every key whose position is less than or equal to [j/2] is
attractive up after j cycles (where j < 2N).

Proof. Suppose key K, is not attractive up after j cycles. Then by
Corollary 2 at each cycle ¢ < j K; moves up or remains stationary. Suppose
that key K, makes two successive stationary moves at cycles ¢ and (1 + 1).

274 MAX L. WARSHAUER

Then one of the following must be true:
(a) The key in position K,(¢# + 1) + 1 is larger than K, and K, is
attractive up, a contradiction; or
(b) K,(t + 1) = N, and K, is attractive up, contradiction.
Thus key K, will make at least one move up every other cycle, unless it
reaches the top position. Hence after j cycles,
K(j) > [j/2] forj<2N.

The lemma follows.
We may similarly state:

LEMMA 5. Every key whose position is greater than or equal to N + 1 —
[/2] is attractive down after j cycles.

Let [N/2] denote the ceiling of N/2, i.e.,

[N/2] = N/2 if N is even,
—(N+1)/2 ifNisodd.

LEMMA 6. After (N +|N/2| — 3) cycles, every key is attractive up and
down.

Proof. Suppose that there is a key K, which is not attractive up. Then
we can say the following about K :

(1) By Lemma 4, after 2| N /2| — 2 cycles, the position of K| is greater
than [N/2] — 1,ie., K,2[N/2] —2)> [N/2] - 1.

(2) By Corollary 2, every move K, makes is either a move up or a
stationary move.

(3) We claim: On each cycle t > 2[N/2] — 2, K, makes a move up.

To verify this claim, suppose to the contrary that key K, makes a
stationary move on cycle ¢ > 2] N/2] — 2. Then since K, is not attractive
up, there must be keys in locations K;(z — 1) + 1 and K,(r — 1) + 2 which
are both smaller than K. In order for K, to be stationary on cycle ¢, these
two keys above K, must swap positions. It follows that the key in position
K, (1 — 1) + 2 before cycle 1 must be smaller than both K; and the key in
position K,(¢z — 1) + 1, and its position is greater than or equal to

[N/2| +2=N+1-(|Ns/2] - 1).

But the key in position K,(t — 1) + 2 is not attractive down after 2| N /2]

— 2 cycles, contradicting Lemma 5. Hence K; must move up on each cycle
t>2[N/2] - 2.

CONWAY’S PARALLEL SORTING ALGORITHM 275

It follows that after (2[N/2] —2)+ ((N/2]—1)=N+[N/2] -3
cycles, the position of key K, will be greater than (|N/2] — 1)+
(IN/2] — 1) = N — 2, and K, is attractive up as desired. A similar argu-
ment shows that K, is attractive down after (N + [N/2] — 3) cycles, which
completes the proof. We may now state

THEOREM 7. After at most (2N — 3) cycles, all keys will be sorted.

Proof. After (N +[N/2] — 3) cycles all keys are attractive up and
down by Lemma 6.

Claim. On each cycle t > N +[N/2] — 3 at least two more keys, one
“large” and one “small” will reach their final positions, until done.

To verify the claim, let K, be the largest key not in its final position after
cycle j, where j = N +[N/2] — 3. K, is attractive up so K, must be one
place below its final position. Observe that the key in position K,(j) + 1
must be less than K, else K, would be in its final position. Further the key
in position K,(j) + 2 (if any) must be larger than K, else K; would not be
attractive up. It follows that K; will move up on cycle (j + 1) and be in its
final position after (j + 1) cycles.

Similarly, the smallest key not in its final position after cycle j is
attractive down, and will reach its final position after (j + 1) cycles.

It follows that on each cycle t > N +[N/2] — 3 at least two move keys
will reach their final positions until all keys are sorted. Thus after at most
[N /2] more cycles, (N +[N/2] = 3) + (IN/2]) = 2N — 3 cycles total, all
keys will be in their final positions.

Observe that although this establishes an upper bound for the number of
cycles required to sort N keys, it is by no means clear that this is best
possible.

Consider the following example: Place keys in positions 1 — N as follows:

Position Key
N 00
N-1 10
N-2 10
N—3 00
N -4 10
N} 10
3 00

10
1 11

The order of keys 00,10, 10 is repeated until the last three keys which are
00,10,11. It easily follows that the largest key, 11, in position 1 requires

276 MAX L. WARSHAUER

($)N — 1 cycles to reach the top. Thus the best possible result is between
()N —1 and 2N — 3. It seems reasonable to conjecture that after
N +|[N/2] — 2 cycles (see Lemma 6) all keys will be sorted, but no proof is
known. '

It would be interesting to know about the average behavior of this
algorithm, although little is presently known about this.

ACKNOWLEDGMENT

The author wishes to express his appreciation to the referee for his insightful suggestions.

REFERENCE

1. D. E. KNuTH, Sorting and searching, “The Art of Computer Programming,” Vol. 3,
Addison—-Wesley, Reading, Mass. (1973).

	Page 1
	02.pdf
	Page 1

	03.pdf
	Page 1

	04.pdf
	Page 1

	05.pdf
	Page 1

	06.pdf
	Page 1

	07.pdf
	Page 1

