
Combinatorial Applications of Grassmann Algebra on

Laplacian Matrices and Subgraph Enumerations

Abstract

In the field of graph theory, Laplacian matrices corresponding to graphs prove useful in

deriving graph properties. Grassmann algebra and the Berezin integral, devised for integrat-

ing fermionic fields, possess combinatorial properties via exponential generating functions.

In this paper, we integrate Grassmann polynomials to formulate expressions for the determi-

nant and permanent of Laplacian matrices. After deriving an alternate proof of Kirchhoff’s

Theorem, we introduce modifications to the Grassmann algebra; this allows us to evaluate

the Laplacian permanent and construct an alternative proof for its enumeration of bipartite

subgraphs. We then generalize this enumeration to submatrices and modify the Laplacian

to generalize enumerated subgraphs to an even greater extent. These computations possess

applications in graphical situations involving high levels of connectivity; specifically, the bi-

jection between even-cycled graphs and bipartite graphs is key for specific data structures.

Our results prove especially ideal in formulating an efficient method in computing paths and

cycles within complex biological interaction graphs. Our paper presents a rigorous set of

applications for Grassmann algebra in order to derive properties of Laplacian permanents,

which are widely believed to be too difficult to calculate and impractical to use, and to count

specific and applicable subgraphs.
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1 Introduction

Graph theory has long served as the premier tool in modeling networks and connections be-

tween object pairs. Graph structures are pervasively used in optimizing computer, electrical,

and transportation networks, contributing to a rich understanding of graphical properties,

and fulfilling useful applications to other mathematical and scientific fields.

Grassmann algebra has largely been applied to studying subatomic particles with odd half

integer spin, known as fermions, in the field of physics [3]. However, Grassmann algebra has

less known, but just as pertinent, applications in mathematics, specifically in linear algebra

and combinatorics [7]. Matrix representations of graphs encode information about their

edge sets and connectivity, and approaching these matrices using Grassmann algebra and

Berezin integrals can derive additional information about graphs. For example, Grassmann

algebra enables an algebraic proof for Kirchhoff’s Theorem, which enumerates spanning

trees in a graph via the determinant minor of the Laplacian matrix [1]. Similarly, Grassmann

algebra has been applied to proving the Lindström-Gessel-Viennot Lemma, which relates the

determinant of the matrix of a weighted graph to its lattice paths [5]. Grassmann algebra is

an extremely useful tool in generating determinants and permanents of graph matrices and

thus holds a high level of potential in deriving new theorems in graph theory.

While Kirchhoff’s Theorem employs the determinant of the graph Laplacian, another

characteristic of the matrix that can be calculated from the entries is the permanent. There

has been extensive and ongoing research regarding how to calculate the permanent of a

matrix in polynomial time, as can be done for the determinant. Because of the complexity

of its computation, permanents are not as widely studied as determinants. Similar to how

Kirchhoff’s Theorem enumerates spanning trees in a graph from its matrix representation,

our results show that the permanent of Laplacian matrices is able to count several types of

graph features.
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2 Background Information

2.1 Definitions

Definition 2.1. A graph is an ordered pairG = (V,E) in which V is a set of vertices (denoted

{v1, v2, . . . , vn}) and edge set E is a set of two-element subsets of V . Visual representations

of graphs use points to denote vertices and lines connecting points to denote edges.

Definition 2.2. The degree of vertex vi, or deg(vi), is the number of edges connected to vi.

Definition 2.3. A directed edge is an ordered pair of vertices (vi, vj) such that vi is the base

of the edge and vj is the destination of the edge. The direction is from vi to vj. For directed

edges, (vi, vj) and (vj, vi) are distinct and may both exist in a directed graph.

Remark. For directed graphs (defined below), each vertex has an indegree and an outdegree.

The indegree of vertex vi, denoted indeg(vi), is equal to the number of vertices vj such that

directed edge (vj, vi) exists. The outdegree of vertex vi, denoted outdeg(vi), is equal to the

number of vertices vj such that directed edge (vi, vj) exists.

Definition 2.4. A directed graph is an ordered pair G = (V,A) in which V is a set of vertices

and A is a set of directed edges. Visually, an arrow is drawn for each directed edge, with the

head representing the destination and the tail representing the base.

Definition 2.5. A subgraph of a graph G = (V,E) is a graph H = (V ′, E ′) such that V ′

and E ′ are subsets of V and E respectively, and E ′ is a set containing two-element subsets

of V ′.

Remark. In our research, we exclusively consider subgraphs where V ′ = V .

Definition 2.6. For a graph with n vertices, the Laplacian matrix of a graph L, also known
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as the graph Laplacian, is an n× n matrix where

Lij =


deg(vi) if i = j

−1 if vi and vj are adjacent

0 otherwise.

By the definition of a vertex degree, the sum of the terms in any row or column is zero.

Definition 2.7. A submatrix MIJ of matrix M is a matrix formed by deleting a set of rows

I and a set of rows J from M .

Definition 2.8. A path is a sequence of vertices {vi1 , vi2 , . . . , vik} in which vertices adjacent

in the sequence are connected by an edge. The number k− 1 denotes the length of the path.

Definition 2.9. A cycle is a sequence of vertices {v1, v2, . . . , vk} in which vertices adjacent

in the sequence are connected by an edge, and there is an edge connecting (v1, vk). A cycle

is considered even when k is even and odd when k is odd. In this case, k denotes the length

of the cycle.

Remark. Only directed graphs can have cycles with length 2.

Definition 2.10. A bipartite graph (also known as a bigraph or a two-colorable graph) is a

graph whose vertex set can be partitioned into two sets of vertices such that no two vertices

in the same set are adjacent. It can be shown that a graph is bipartite if and only if it

contains no odd cycles.

Definition 2.11. A connected component (or component) of a graph G is a subset of vertices

S such that any pair of vertices in S is connected by at least one path, and any vertex not

in S has no paths connecting it to any vertex in S.

Definition 2.12. A spanning tree of a graph with n vertices is a subgraph with n− 1 edges

such that between each pair of vertices a path exists. It follows that spanning trees do not

contain any cycles.
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Definition 2.13. The determinant of a square matrix A is denoted as det(A) or |A|. The

formula for the determinant is given as det(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

ai,σ(i) where σ is a permu-

tation of the set {1, 2, 3, . . . , n} and sgn(σ) =


1 if σ is even

−1 if σ is odd.

Definition 2.14. The permanent of square matrix A, denoted as perm(A), represents the

unsigned summation of permutation products. The explicit formula for an n× n matrix is

perm(A) =
∑
σ∈Sn

n∏
i=1

ai,σ(i).

Definition 2.15. A minor MIJ of matrix M is the determinant of a square submatrix with

row set I and column set J deleted, where |I| = |J |.

Definition 2.16. The summation notation
n∑
i,j

indicates the summation over all pairs of

positive integers i, j ≤ n. The definition is analogous for
n∏
i,j

.

2.2 Grassmann Algebra

Grassmann algebra is a type of algebra on Grassmann variables which, when expressed in

products or used in polynomials, possesses useful mathematical properties. With generating

functions and the Berezin integral, it may be used to enumerate matrix determinants and

permanents. Specifically, we can use Grassmann variables in the context of vertices on a

graph and deduce permanents and determinants in Laplacian matrices.

Definition 2.17. Grassmann variables are anticommutative variables that are usually writ-

ten as χ1, χ2, . . . , χn for n ∈ N:

χiχj = −χjχi, ∀i, j ∈ 1, 2, . . . , n.

∴ χ2
i = 0, ∀i ∈ 1, 2, . . . , n.

We define a function in Grassmann algebra to be a function f such that
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f(χ) =
∑

1≤i1,i2,...,ik≤n

ai1 . . . aikχi1 . . . χik ,

where each ai is a numerical constant. The equation implies the function f is made up of

nonzero monomials in Grassmann variables, where each term has a coefficient ("weight").

By the Taylor series expansion of the exponential function (denoted as ex or expx)

function, we can conclude that for any Grassmann function f with n different variables,

exp f(χ) = ef(χ) =
+∞∑
l=0

1

l!
f(χ)l

This expression becomes a regular polynomial in terms of Grassmann variables. It is easily

shown that if f(χ) is in the form Aχ1χ2...χn, then f(χ)p = 0 for p > n. Thus, the infinite

summation produces a polynomial with finite degree.

Theorem 2.1. Let f be a nonzero, non-constant summand of a Grassmann polynomial.

Then we can conclude [5] that exp f = 1 + f .

Theorem 2.2. Let g and h be summands of Grassmann polynomials. Then egeh = eg+h if

at least one of g or h is even, i.e. the degree of at least one of the summands is even [1].

Definition 2.18. The Berezin integral on the Grassmann algebra is an extension of the

path integral (not the traditional Lebesgue-style integral) where

∫
dχ1dχ2 . . . dχn χ1χ2 . . . χn = 1∫
dχ1dχ2 . . . dχn aχ1χ2 . . . χn = a∫

dχ1 a = 0.

We may interpret the Berezin integral as an operation similar to partial derivatives. If

dχi is the right-most differential, then the "coefficient" of χi is taken (which can include

other variables) [9]. This process continues until every differential is evaluated, returning

the integral value (the final coefficient).
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For the purposes of this paper, we will always be examining constant integrals, i.e. inte-

grals without any residual variables. Thus, we are specifically differentiating with respect to

the Grassmann variables representing graph models.

2.3 Previous Work

Carrozza, Krajewski, and Tanasa [5] introduce two sets of Grassmann variables: the set

χ = {χ1, χ2, . . . , χn} and the set χ̄ = {χ̄1, χ̄2, . . . , χ̄n}. An n×n matrix A is also introduced.

The following theorem is stated:

Theorem 2.3. Using the notation dχ̄dχ def
= dχ̄ndχnd ¯χn−1dχn−1 . . . dχ̄1dχ1,

|A| =
∫
dχ̄dχ exp(−χ̄Aχ) =

∫
dχ̄dχ exp

(
n∑
i,j

χ̄iAijχj

)
.

Theorem 2.3 sets a key precedent in generalizing Kirchhoff’s Matrix Tree Theorem, a well-

known theorem relating the enumeration of subgraphs to certain Laplacian minors and Hy-

perpfaffian graphs [1]. The concept of using the exponential generating function will also

prove quite useful in our research, as the expanded form of the expression is fruitful in

relating Grassmann variables to the calculation of permanents.

Theorem 2.4 (Kirchhoff’s Theorem). Let G be a graph. The determinant of its graph

Laplacian L with any row and its corresponding column deleted enumerates the number of

spanning trees in G.

Proof. Without loss of generality, we can consider L11 (the graph Laplacian with row 1 and

column 1 removed). Note that the determinant of a minor is equal to the integral of the

whole determinant in which χ1 and χ̄1 are not evaluated as differentials. Thus we have

|L11| =
∫
dχ̄dχ χ1χ̄1 exp(−χ̄Lχ) =

∫
dχ̄dχ χ1χ̄1 exp

(
−

n∑
i,j

χ̄iLijχj

)
,

where
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χ̄Lχ =
n∑
j=1

χ̄j

(
n∑
i=1

Lij

)
χj +

n∑
i,j

(χ̄i − χ̄j)Lijχj.

Let Bj
def
=

n∑
i=1

Lij for 1 ≤ j ≤ n. Note that row sums and column sums are equal to zero for

Laplacian matrices, so Bj = 0, and our expression becomes

χ̄Lχ =
n∑
i,j

(χ̄i − χ̄j)Lijχj.

Note that whenever i = j, the term in the summation becomes 0.

Using Taylor series expansion yields

|L11| =
∫
dχ̄dχ χ1χ̄1 exp(−χ̄Lχ) =

∫
dχ̄dχ χ1χ̄1 exp

(
n∑
i,j

− (χ̄i − χ̄j)Lijχj

)

=

∫
dχ̄dχ χ1χ̄1

n∏
i,j

exp (− (χ̄i − χ̄j)Lijχj)

=

∫
dχ̄dχ χ1χ̄1

n∏
i,j

(1− (χ̄i − χ̄j)Lijχj) .

Consider all such pairs i, j in the expression. If i = j, the factor is equal to 1 (since

χ̄i − χ̄j = 0) and is therefore irrelevant in the product. If vi and vj are not connected by

an edge, then Lij = 0 and the factor is equal to 1. Thus, we can rewrite the determinant

expression as

|L11| =
∫
dχ̄dχ χ1χ̄1

n∏
i,j|(vi,vj)∈E

(1 + (χ̄i − χ̄j)χj) .

Note that in this product of binomials, the integral evaluates the coefficient of χ2χ3 . . . χnχ̄2χ̄3 . . . χ̄n.

This term is produced from a product of n − 1 factors in the form (χ̄j − χ̄i)Lijχj, where

χj is distinct in each factor. Let χj represent vj in graph G, and let (χ̄j − χ̄i) represent a

directed edge from vi to vj.

Lemma 2.1. For Grassmann variables χ1, χ2, . . . , χk,

(χ2 − χ1)(χ3 − χ2) . . . (χk − χk−1)(χ1 − χk) = 0.
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Proof. In order to obtain a nonzero expression with χ2 in the first factor (as a result of the

fact that χni = 0), we must combine χ2 with χ3 from the second factor, χ4 from the third, and

so on, yielding a term of χ2χ3 . . . χnχ1, which is equal to χ1χ2 . . . χn(−1)n−1 by anticommu-

tativity. Similarly, we have that χ1 in the first factor only produces (−χ1)(−χ2) . . . (−χn) =

χ1χ2 . . . χn(−1)n. Since the two terms are additive inverses, we achieve the desired result.

Therefore, |L11| enumerates directed graphs with n−1 edges and no cycles. This is equal

to the number of spanning trees in G, thus concluding the proof.

�

3 New Results

Apart from Bapat’s theorem published in 1986, which we will prove and generalize using

Grassmann algebra and Berezin integration, there has been little research on evaluating the

permanent of graph Laplacians. Our work serves to extend the combinatorial aspects of the

permanent (of both the graph Laplacian and its submatrices) and to carve out its place as

an applicable matrix property in mathematics.

3.1 Modified Grassmann Algebra

To make Grassmann algebra applicable to expressing the permanent, we modify it as such:

Definition 3.1. Modified Grassmann variables are variables that are denoted as ψ1, ψ2, . . . , ψn

for n ∈ N and have the following properties:

ψiψj = ψjψi, ∀i, j ∈ 1, 2, . . . , n

ψ2
i = 0 ∀i ∈ 1, 2, . . . , n.

The key difference is that the variables of Modified Grassmann algebra (henceforth referred

to as MGA) are commutative.
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We will proceed to verify a Grassmann expression of a matrix permanent. The proof

will be similar to the proof of Theorem 2.3 given by Carrozza et al., but since it is an

undocumented result, it will be provided here.

Theorem 3.1. If A is an n× n matrix, then

perm(A) =

∫
dψ̄dψ exp(ψ̄Aψ) =

∫
dψ̄dψ exp

(
n∑
i,j

ψ̄iAijψj

)
.

Proof. By Theorem 2.1 and Theorem 2.2, we obtain the following product expression

∫
dψ̄dψ exp

(
n∑
i,j

ψ̄iAijψj

)
=

∫
dψ̄dψ

n∏
i,j

(1 + ψ̄iAijψj)

which evaluates all ordered pairs (i, j) such that i, j ∈ {1, 2, ..., n}, n being the dimension of

the square matrix A. Note that dψ̄dψ is analogous to its counterpart found in Theorem 2.3.

Consider
n∏
i,j

(1 + ψ̄iAijψj), a product of binomials. Note that each integrated summand

in the expanded polynomial (i.e. of the form aχ1χ2 . . . χn) is the product of 2n variables,

or n binomial factors in the form ψ̄iAijψj. The coefficient of the collective sum of these

summands of degree 2n equals the integral value. Since ψ2
j = 0, we only need to take into

account the expanded terms where each variable is multiplied only once. For these terms,

both i and j must take the value of every integer in the set {1, 2, . . . , n} for a summand with

a nonnegative constant to be made. This is the same situation as trying to choose n entries

of A (in the form Aij) such that no entries share the same row or column. Furthermore, the

constant coefficient in the former and the product of the entries in the latter are equal: a

product of n Aij terms. Taking the summation of all products of n Aij terms satisfying the

above conditions yields the desired result. �

Next, we introduce a corollary for a more intuitive graphical analysis of MGA.
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Corollary 3.1.1. For an n× n matrix A,

perm(A) =

∫
dψ̄dψ

n∏
i,j

(1 + (ψ̄i − ψ̄j)Aijψj)
n∏
i,j

(1 + ψ̄jBjψj),

where Bj is the sum of the terms in column j of A.

Proof. Note that

n∑
i,j

ψ̄iAijψj =
n∑
j=1

ψ̄j

(
n∑
i=1

Aij

)
ψj +

n∑
i,j

(ψ̄i − ψ̄j)Aijψj =
n∑
j=1

Bjψ̄jψj +
n∑
i,j

(ψ̄i − ψ̄j)Aijψj.

Thus,

perm(A) =

∫
dψ̄dψ exp

(
n∑
i,j

ψ̄iAijψj

)
=

∫
dψ̄dψ exp

(
n∑
j=1

Bjψ̄jψj +
n∑
i,j

(ψ̄i − ψ̄j)Aijψj

)
.

=

∫
dψ̄dψ exp

(
n∑
j=1

Bjψ̄jψj

)
exp

(
n∑
i,j

(ψ̄i − ψ̄j)Aijψj

)

=

∫
dψ̄dψ

n∏
j=1

(
1 +Bjψ̄jψj

) n∏
i,j

(
1 + (ψ̄i − ψ̄j)Aijψj

)
.

Rearranging yields the desired results.

�

Theorem 3.2 (Bapat). Let G be a graph with n vertices. Let S denote the set of subgraphs

H of G such that H has no odd cycles and in each connected component of H, the number

of vertices is equal to the number of edges. For each such subgraph H, let c(H) and c0(H)

denote the number of cycles in H and the number of cycles with length 2, respectively. Then

for the Laplacian L of G,

perm(L) =
∑
H∈S

22c(H)−c0(H).
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Proof. By Corollary 3.1.1,

perm(L) =

∫
dψ̄dψ

n∏
j=1

(
1 +Bjψ̄jψj

) n∏
i,j

(
1 + (ψ̄i − ψ̄j)Lijψj

)
=

∫
dψ̄dψ

n∏
i,j

(
1 + (ψ̄i − ψ̄j)Lijψj

)

=

∫
dψ̄dψ

n∏
i,j|(vi,vj)∈E

(
1 + (ψ̄j − ψ̄i)ψj

)
.

For each pair of Grassmann variables χi and χj, we can interpret ψj as vertex vj and
(
ψ̄j − ψ̄i

)
as a directed edge from vi to vj.

LetH be a subgraph enumerated by the permanent. The integral evaluates the coefficient

of ψ1ψ2 . . . ψnψ̄1ψ̄2 . . . ψ̄n. These terms are produced by a combination of n factors in the

form (ψ̄j − ψ̄i)ψj from the binomial expression. Since ψj must be distinct in each of the

n terms, every subgraph enumerated by the integral must be such that for each i in which

1 ≤ i ≤ n, indeg(vi) = 1. Thus, in each component of a subgraph, every vertex has a

corresponding edge (the single directed edge that contributes to its indegree), and thus the

number of vertices is equal to the number of edges in each component of H.

Now we will prove H cannot have an odd cycle via the following lemma.

Lemma 3.1. For modified Grassmann variables ψ1, ψ2, . . . , ψk,

(ψ2 − ψ1)(ψ3 − ψ2) . . . (ψk − ψk−1)(ψ1 − ψk) =


0 if k is odd

2ψ1ψ2 . . . ψk if k is even.

Proof. ψ2
i = 0 for all 1 ≤ i ≤ n, so the expression only returns ψ1ψ2 . . . ψn terms. Thus,

(ψ2 − ψ1)(ψ3 − ψ2) . . . (ψn − ψn−1)(ψ1 − ψn) = ψ1ψ2 . . . ψn + (−1)nψ1ψ2 . . . ψn.

We can easily obtain the desired result by considering the parity of n.

Thus, for each cycle of length 2 in H, H is enumerated by a factor of 2 by Lemma 3.1.

However, for each cycle with length greater than 2, H is enumerated instead by a factor of

4 because we consider two binomial products, (ψ2 − ψ1)(ψ3 − ψ2) . . . (ψk − ψk−1)(ψ1 − ψk)
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and (ψ1 − ψ2)(ψ2 − ψ3) . . . (ψk−1 − ψk)(ψk − ψ1), with each product enumerating H twice.

Therefore, H is enumerated by a factor of 2c0(H)4c(H)−c0(H), or 22c(H)−c0(H), as desired. �

The subgraphs enumerated by Bapat’s theorem are by definition also bipartite graphs,

since no odd cycles exist. Therefore, the theorem and our more intuitive method for its proof

have applications in many fields that require enumeration of bipartite graphs, such as query

writing [2] and analysis of data clusters [6].

Theorem 3.3. Let G be a graph. Let I and J denote subsets of {1, 2, . . . , n} of size k. Let

H be a subgraph of G satisfying the following properties:

• There are k tree-components (components that are trees).

• For each tree-component, there exists a unique i ∈ I and j ∈ J such that vi and vj are

connected by a path within that tree-component.

• Non-tree components have an equal number of vertices as edges, without odd cycles.

For each subgraph H, let σ(H) denote the sum of the lengths of the unique paths connecting

each vi and vj in each tree-component. Let c(H) and c0(H) denote the number of cycles in

H and the number of cycles with length 2, respectively. If L is the Laplacian matrix of G,

then for the n− k by n− k submatrix LIJ ,

perm(LIJ) =
∑
H∈S

(−1)σ(h)22c(H)−c0(H).

Proof. Let G be a graph, and let L be its Laplacian matrix. First, an essential lemma:

Lemma 3.2. Using the notation ψS =
∏
s∈S

ψs, where S is an integer set,

perm(LIJ) =

∫
dψ̄dψ ψIψ̄J

n∏
i,j

(1 + (ψ̄i − ψ̄j)Lijψj) =

∫
dψ̄dψ ψIψ̄J

n∏
i,j

(1 + ψ̄iLijψj).
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Proof. By Corollary 3.1.1, the integral expressions in the lemma statement are equivalent.

Consider the expression on the far right. The coefficient ψIψ̄J is comprised of 2k variables.

Thus, the integral returns the coefficient of the summand with degree 2(n − k) from the

product, which is exclusively composed of all ψc such that c /∈ I and all ψ̄d such that

d /∈ J . Combinatorially, the integral of the product expression is equivalent to the permanent

expression of a (n− k)× (n− k) matrix with rows IC and columns JC (where the C denotes

the complement of a set). But this matrix is equal to LIJ , so the coefficient of the summand

is perm(LIJ), proving the lemma.

Recall that

perm(LIJ) =

∫
dψ̄dψ ψIψ̄J

∏
(vi,vj)∈E

(1 + (−1)(ψ̄i − ψ̄j)ψj),

where E is the edge set of G. Recall the previous graphical interpretation for (ψ̄i − ψ̄j)ψj,

which represents a directed edge (vi, vj). The product expression represents a collection of

edges, i.e. a graph. Note that each summand in the binomial expansion contributing to the

integral value is a product of n − k terms in the form (−1)(ψ̄i − ψ̄j)ψj. We now show that

the subgraphs described in the problem statement correspond directly to the coefficient of

ψIC ψ̄JC and that all other graphs are not enumerated in the integration.

Let H be a subgraph of G with the properties given in the theorem statement. Let

I = {i1, . . . ik} and J = {j1, . . . jk}. Without loss of generality, let via and vja be in the

component of Ta, the ath tree-component. Since trees are counted in a uniform process, we

will only count the first tree, T1, and generalize to the others.

T1 has vertex set vi1 , vj1 , va1 , . . . , vat and its collection of edges contribute the product

t+1∏
(vi,vj)∈ET1

(−1)(1 + (ψ̄i − ψ̄j)ψj),

for which we will show that the coefficient of the term with degree 2t + 4 equals either 1
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or −1, depending on the length of the unique path (by definition of spanning tree) from vi

to vj. For each ψ̄ term, j must take the value of each of the vertex indices except i1. This

implies that every other vertex has indegree equal to 1.

Now we consider the product chain of (ψ̄i− ψ̄j) terms. For the binomial terms, adjacent

edges will share one term in the binomial due to their common vertex. Thus, we note that

the simplification of this chain into a nonzero product always involves taking every first term

or every second term of each binomial (ψ̄i− ψ̄j). Note that either the ψ̄i1 or the ψ̄’s for each

of the nodes with outdegree 0 will not be present in the thus incomplete product.

To resolve these shortcomings in the product, we modify our product such that a ψi1ψ̄j1

is multiplied outside of the product. This achieves two purposes: the ψi1 term in the integral

is now accounted for, and the simplification of the binomial chain is no longer 0 with the

lone factor of ψ̄j1 .

The product is affected in that instead of evaluating to the product of every first term

and the product of every second term, ψ̄j1 means all other instances of that variable are

not included in the product, effectively deciding which variable in the binomial is chosen

depending on where the edge is in relation to vj1 . All directed edges of paths from vj1 to the

nodes with indegree 0 have every second binomial term multiplied, and all remaining edges

have every first binomial term multiplied (this follows directly from the placement of the ψ̄j1

for these two distinct types of edges), yielding a term of degree 2t+ 4.

Now we take into account the sign of the coefficient. Note that for T1, the sign is equal

to (−1)t+2(−1)(t+2)−l = (−1)l, where l is the length of the path from vi1 to vj1 . Thus, the

sign of the enumeration is negative when l is odd and positive when l is even for T1.

It becomes clear that any component that does not fit the criteria of the theorem state-

ment will necessarily not have a term of degree 2t+4; in fact, such components would have a

coefficient of 0, which, when enumerated over all components in H, would lead to the count

of the whole subgraph being 0.

We can enumerate every subgraph via this method for each tree-component, and the
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remaining components with equal numbers of edges and vertices are enumerated by an

argument analogous to that of Theorem 3.2 (Bapat’s Theorem). Thus, in any subgraph H,

H is enumerated positively or negatively depending on the sum of l values in each component,

and even cycles (including cycles of length 2), which can be present in non-tree components,

contribute additional enumerative factors. Taking the summation for the enumeration of all

subgraphs, we have
∫
dψ̄dψ ψIψ̄J

n∏
i,j

(1 + (ψ̄i − ψ̄j)Lijψj) =
∑
H∈S

(−1)σ(h)22c(H)−c0(H). �

Theorem 3.3 enables counting all subgraph solutions for situations where each object in

a set of objects must be paired with an object from a second object set and connected in the

most efficient manner. Evaluating permanent minors can generate non-intersecting paths

(i.e. no shared vertex in any two paths) between pairs of vertices, offering a powerful tool

to optimize networks and circuits by connecting specific pairs of objects when necessary.

3.2 Positive Laplacian Matrix

Laplacian matrices (and their minors) have proven useful in enumerating certain types

of subgraphs, enabling an accurate evaluation of the connectivity of a graph. We proceed to

modify the Laplacian matrix definition in order to derive additional enumerations, particu-

larly those that include subgraphs with odd cycles (not necessarily bipartite).

Definition 3.2. For a graph with n vertices, the positive Laplacian matrix of a graph L+ is

an n× n matrix where

L+
ij =


deg(vi) if i = j

1 if vi and vj are adjacent

0 otherwise.

Note that the sum of terms in row i or column i is equal to 2deg(vi).

Theorem 3.4. Let G be a graph with n vertices. Let S denote the set of subgraphs H of G

such that in each connected component of H, the number of vertices and edges is equal. For
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each such subgraph H, let c(H) and c0(H) denote the number of cycles in H and the number

of cycles with length 2, respectively. Then for the positive Laplacian L+ of G,

perm(L+) =
∑
H∈S

22c(H)−c0(H).

Proof. Recall that

perm(L) =

∫
dψ̄dψ exp

(
n∑
i,j

ψ̄iLijψj

)
=

∫
dψ̄dψ exp

(
n∑
j=1

Bjψ̄jψj +
n∑
i,j

(ψ̄i − ψ̄j)Lijψj

)

=

∫
dψ̄dψ exp

(
n∑
j=1

2deg(vj)ψ̄jψj +
n∑
i,j

(ψ̄i − ψ̄j)Lijψj

)

=

∫
dψ̄dψ exp

(
n∑
j=1

ψ̄j

(
2

n∑
i=1

Lij

)
ψj +

n∑
i,j

(ψ̄i − ψ̄j)Lijψj

)

=

∫
dψ̄dψ exp

(
n∑
i,j

(ψ̄i + ψ̄j)Lijψj

)

=

∫
dψ̄dψ

n∏
i,j

(
1 +

(
ψ̄i + ψ̄j

)
Lijψj

)
.

Here we interpret ψj as vertex vj and
(
ψ̄j + ψ̄i

)
as directed edge (vi, vj).

With an argument analogous to that in Theorem 3.2, we can conclude that each H has

an equal number of vertices and edges in each of its components.

Lemma 3.3. For modified Grassmann variables ψ1, ψ2, . . . , ψk,

(ψ2 + ψ1)(ψ3 + ψ2) . . . (ψk + ψk−1)(ψ1 + ψk) = 2ψ1ψ2 . . . ψk.

Proof. Since ψ2
i = 0 for all 1 ≤ i ≤ n, the binomial expression simplifies to the desired result.

Thus, for each cycle of length 2 in H, H is enumerated by a factor of 2 by Lemma

3.3. For each cycle with length greater than 2, H is enumerated by a factor of 4 because we

consider two distinct binomial products in the product expansion, (ψ2+ψ1)(ψ3+ψ2) . . . (ψk+
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ψk−1)(ψ1+ψk) and (ψ1+ψ2)(ψ2+ψ3) . . . (ψk−1+ψk)(ψk+ψ1), with each product enumerating

H twice. Therefore, H is enumerated by a factor of 2c0(H)4c(H)−c0(H), or 22c(H)−c0(H), as

desired. �

4 Applications

While there are countless real-world situations that can be represented by even-cycled graphs

such as those we have focused on in our research, there has been limited research into the

importance and usage of the permanent of the Laplacian matrix representing the graph.

Theorem 3.3 offers a new way to count subgraphs with the connection of any number of

vertex pairs as a requirement. While algorithms do exist to detect the shortest path between

any two vertices, our theorem is able to consider several vertex pairs connected efficiently in

disjoint trees. These subgraph criteria can potentially align certain network requirements to

optimize data transfer efficiency [11].

The enumerations of cycles and paths achieved by Theorem 3.3 and Theorem 3.4 also

have strong applications in bioinformatics. Klamt and von Kamp recognize the necessity

of path and cycle enumerations to evaluate biological causal relationships in their research

[10]. They work with interaction graphs, which are signed, directed graphs representing

one-on-one connectivity. They state the requirement of path-finding and cycle-counting

in specific biological networks such as cell signaling, protein-protein interactions, complex

feedback loops, and signal transduction. Through our enumerations, we have presented an

alternative way of computing such counts through matrix calculations instead of their pre-

ferred backtracking algorithms. In fact, since the number of paths starting from a particular

vertex can increase exponentially, their breadth-first algorithms are impractical in extensive

enumeration; however, computation of the Laplacian permanent still holds to be a feasible

enumerator. Though Klamt and von Kamp mention a lack of research done on cyclical enu-

merations, our Theorem 3.4 applies itself perfectly, being able to count collections of cycles
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of both even and odd length.

In query rewriting, weighted bipartite graphs, where one vertex set represents queries and

the other represents ads, are used to represent click graphs [2]. These click graphs are crucial

for leading search engines such as Google and Yahoo to produce the most relevant search

results. By studying connections between what users type and what their click actions show

they are looking for, search engines can predict search preferences for users. Our research

extends this use of bipartite click graphs to count the number of possible query and ad

connections to further the efficiency and practicality of query rewriting in search engines.

Our findings in the combinatorial interpretation of the permanent of click graphs may be

used to further refine and specify search results to give users the most optimal return.

5 Future Work

We have demonstrated through our results that Grassmann-Berezin and Modified Grassmann-

Berezin Calculus are far more suitable for combinatorial arguments than what most mathe-

maticians have expected them to be. Our results may also shed light on the bounding of the

permanent of any matrix, a problem that has garnered the attention of mathematicians for

decades [4], [8]. Our relation between the Laplacian permanent with cycles also suggests the

possibility of reverse-engineering an algorithm for a faster computation of the permanent.

Such an extension of our work would be monumental in the field of computer science. There

is much more to the Laplacian matrix than its determinant and permanent; for example, the

combinatorial interpretation of the square root of the graph Laplacian is an equally elusive

result, although a systematic application of the Binomial Theorem on Grassmann variables

may be likely to produce an algebraic expression.

Overall, the capacity of this unusual algebra (which had rarely been used outside of its

purpose in physics) to excavate these previously unseen mathematical connections serves as

a beacon of inspiration that will guide further inquiries of the field.
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