Binomial Coefficients

Binomioid Coefficients

Daniel Shapiro
2020

Pascal's Triangle

Binomial coefficients $\binom{n}{k}$ are entries in Pascal's Triangle.

	0	1	2	3	4	5	6	7	8	
0	1									
1	1	1								
2	1	2	1							
3	1	3	3	1						
4	1	4	6	4	1					
5	1	5	10	10	5	1				
6	1	6	15	20	15	6	1			
7	1	7	21	35	35	21	7	1		
8	1	8	28	56	70	56	28	8	1	
\vdots	\ddots									

Index $n \geq 0$ vertically on the left, and index $k \geq 0$ across the top.

First called Pascal＇s Triangle in 1708，after French scholar Blaise Pascal（1623－1662）．But it arose earlier．

Italians call it Tartaglia＇s triangle．After Niccolò Tartaglia writing in 1556.
Levi ben Gerson used factorial formula around 1300.
Called the Khayyam triangle in Iran．Persian Omar Khayyam～ 1100 ．
Called Yang Hui＇s triangle in China．Yang Hui 杨䉽（1238－1298）studied that arithmetic triangle，following Jia Xian 贾宪 ~ 1050 ．

Mahāvirira wrote the factorial formula for $\binom{n}{k}$ ，around 850 ．
Around 100 BCE ，Indian scholar Pingala studied meters in Sanskrit prosody，and wrote about that arithmetic triangle．
As well as：zero，binary numerals，binomial theorem，and Fibonacci numbers．

Three standard ways to define those entries $\binom{n}{k}$.

- Count how many k-sets are in an n-set.
- Additive Recursion: $\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}$.
- Factorials: $\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n(n-1) \cdots(n-k+1)}{k(k-1) \cdots 1}$.

With another sequence in place of $(n)=(1,2,3,4 \ldots)$, that factorial formula provides an analogue of binomial coefficients.

Let $(c)=\left(c_{1}, c_{2}, c_{3}, \ldots\right)$ be a sequence of positive integers. Define the c-factorial to be: $\langle n\rangle!_{c}=c_{n} c_{n-1} \cdots c_{2} c_{1}$.

For $(c)=\left(c_{1}, c_{2}, \ldots\right)$, define the c-nomial coefficients

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{c}=\frac{\langle n\rangle!_{c}}{\langle k\rangle!_{c} \cdot\langle n-k\rangle!_{c}}=\frac{c_{n} c_{n-1} \cdots c_{n-k+1}}{c_{k} c_{k-1} \cdots c_{1}} .
$$

These numbers form the Pascaloid Triangle for c.
Note: $\left[\begin{array}{l}n \\ 0\end{array}\right]=1$, and rows are symmetric: $\left[\begin{array}{l}n \\ k\end{array}\right]=\left[\begin{array}{c}n \\ n-k\end{array}\right]$.
If $k>n$, define $\left[\begin{array}{l}n \\ k\end{array}\right]=0$.

Definition

Sequence (c) is binomioid if all $\left[\begin{array}{l}n \\ k\end{array}\right]_{c}$ are integers.

Binomioid examples.

- Constant sequence $(3,3,3,3, \ldots)$ is binomioid.

Check: $\left[\begin{array}{l}n \\ k\end{array}\right]_{c}=\frac{c_{n} c_{n-1} \cdots c_{n-k+1}}{c_{k} c_{k-1} \cdots c_{1}}=\frac{3^{k}}{3^{k}}=1$.

- $\{$ binomioid sequences $\}$ is closed under multiplication. That is: If $(a)=\left(a_{1}, a_{2}, \ldots\right)$ and $(b)=\left(b_{1}, b_{2}, \ldots\right)$ are binomioid, then the product sequence $(a b)=\left(a_{1} b_{1}, a_{2} b_{2}, \ldots\right)$ is also binomioid.

Corollary. Sequence $\left(n^{2}\right)=(1,4,9,16, \ldots)$ is binomioid.

Choose your favorite sequence, construct its Pascaloid Triangle, and see whether it is binomioid.

Before going to more examples, let's review why
$(n)=(1,2,3, \ldots)$ is binomioid.
The usual proof uses counting or recursion.
We outline a purely factorial proof.
For a prime p, what power of p occurs in $n!$?
Lemma. (Exponent of p in $n!)=\sum_{k \geq 1}\left\lfloor n / p^{k}\right\rfloor$.
Proof. In $1,2, \ldots, n$, count $\lfloor n / p\rfloor$ terms with p as a factor. But some terms involve more than one factor of p. Count $\left\lfloor n / p^{2}\right\rfloor$ with p^{2} as a factor. Etc. So: (Exponent of p in $n!)=\lfloor n / p\rfloor+\left\lfloor n / p^{2}\right\rfloor+\left\lfloor n / p^{3}\right\rfloor+\cdots$. QED

We outline a purely factorial proof that the sequence $(n)=(1,2,3, \ldots)$ is binomioid.

To prove: Every $\binom{a+b}{a}$ is an integer.
Suffices to check, for every prime p:

$$
\text { Exponent of } p \text { in } \frac{(a+b)!}{a!b!} \text { is } \geq 0
$$

This follows from the Lemma, if we verify the following exercise. QED

Exercise. If α, β are real numbers then:

$$
\lfloor\alpha+\beta\rfloor \geq\lfloor\alpha\rfloor+\lfloor\beta\rfloor .
$$

Easy Examples.

- How about $(c)=\left(2^{n}\right)=(2,4,8,16, \ldots)$?

Is every $\left[\begin{array}{l}n \\ k\end{array}\right]_{c}=\frac{2^{n}}{2^{k}} \frac{2^{n-1}}{2^{k-1}} \cdots \frac{2^{n-k+1}}{2^{1}}$ an integer?.
In general, notice that: $\left[\begin{array}{l}n \\ k\end{array}\right]_{c}=\frac{c_{n}}{c_{k}} \frac{c_{n-1}}{c_{k-1}} \ldots \frac{c_{n-k+1}}{c_{1}}$
If $c_{r} \mid c_{s}$ whenever $r \leq s$, then this product is an integer.
Definition. $c=\left(c_{n}\right)$ is a divisor-chain if $c_{n} \mid c_{n+1}$ for every n.
We have proved:
Every divisor-chain is binomioid.

More challenging examples.

- Is $\left(2^{n}-1\right)=(1,3,7,15, \ldots)$ binomioid?

For example, $\left[\begin{array}{l}6 \\ 3\end{array}\right]_{c}=\left[\frac{2^{6}-1}{2^{3}-1}\right]\left[\frac{2^{5}-1}{2^{2}-1}\right]\left[\begin{array}{l}2^{4}-1 \\ 2^{1}-1\end{array}\right]=\frac{63}{7} \frac{31}{3} \frac{15}{1}=1395$.
Prove: Every $\left[\begin{array}{l}n \\ 3\end{array}\right]_{C}=\left[\frac{2^{n}-1}{7}\right]\left[\frac{2^{n-1}-1}{3}\right]\left[\frac{2^{n-2}-1}{1}\right]$ is an integer.
Idea goes back 1808 with Gauss's " q-nomial coefficients":
Theorem. $\left(q^{n}-1\right)$ is binomioid, for any integer $q>1$.
Perhaps this is not surprising because we know:

$$
m\left|n \Longrightarrow\left(q^{m}-1\right)\right|\left(q^{n}-1\right)
$$

(How to prove that?)
Exercise. If sequence (a) satisfies that divisibility property $\left(m\left|n \Rightarrow a_{m}\right| a_{n}\right)$, must (a) be binomioid?

Gauss studied factorizations of $x^{n}-1$.

$$
\begin{aligned}
& x^{1}-1=(x-1) \\
& x^{2}-1=(x-1)(x+1) \\
& x^{3}-1=(x-1)\left(x^{2}+x+1\right) \\
& x^{4}-1=(x-1)(x+1)\left(x^{2}+1\right) \\
& x^{5}-1=(x-1)\left(x^{4}+x^{3}+x^{2}+x+1\right) \\
& x^{6}-1=(x-1)(x+1)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)
\end{aligned}
$$

Those factors are the cyclotomic polynomials $\Phi_{n}(x)$. Then

$$
\begin{array}{ll}
\Phi_{1}(x)=x-1 & \Phi_{2}(x)=x+1 \\
\Phi_{3}(x)=x^{2}+x+1 & \Phi_{4}(x)=x^{2}+1 \\
\Phi_{5}(x)=x^{4}+x^{3}+x^{2}+x+1 & \Phi_{6}(x)=x^{2}-x+1
\end{array}
$$

Generally, $\Phi_{n}(x) \in \mathbb{Z}[x]$ is monic polynomial of degree $\varphi(n)$ and

$$
x^{n}-1=\prod_{d \mid n} \Phi_{d}(x)
$$

Divisor Products.

Definition. Sequence $(a)=\left(a_{1}, a_{2}, \ldots\right)$ is a divisor-product if there is an integer sequence (b) such that

$$
\begin{equation*}
a_{n}=\prod_{d \mid n} b_{d}, \text { for every } n . \tag{*}
\end{equation*}
$$

For instance,

$$
\begin{array}{lll}
a_{1}=b_{1} & a_{2}=b_{1} b_{2} & a_{3}=b_{1} b_{3} \\
a_{4}=b_{1} b_{2} b_{4} & a_{5}=b_{1} b_{5} & a_{6}=b_{1} b_{2} b_{3} b_{6}
\end{array}
$$

If every $a_{n} \neq 0$, solve successfully for b_{n}. (Compare Mäbius Inversion.) There always exist $b_{n} \in \mathbb{Q}$ satisfying equations (*).

Divisor-products have all $b_{n} \in \mathbb{Z}$.
Divisor-Product Theorem.
Every divisor-product sequence is binomioid.

For integer $q>1$, observe that:
the sequence $q^{n}-1$ is a divisor-product.
Because $q^{n}-1=\prod_{d \mid n} \Phi_{d}(q)$ and each $\Phi_{d}(q) \in \mathbb{Z}^{+}$.
Therefore: (Divisor-Product Theorem) \Rightarrow (Gauss's Theorem).
For example, $2^{n}-1=\prod_{d \mid n} g_{d}$,
where $\left(g_{n}\right)=\left(\Phi_{n}(2)\right)=(1,3,7,5,31,3,127,17,73,11, \ldots)$.
Exercise. Do these ideas generalize to show that $\left(3^{n}-2^{n}\right)$ is a divisor-product?

Exercise. Which of the following are divisor-products?

- Constant sequence (c, c, c, ...).
- $\left(c^{n}\right)=\left(c, c^{2}, c^{3}, \ldots\right)$.
- $(n)=(1,2,3, \ldots)$.
- Fibonacci (1, 1, 2, 3, 5, 8, 13, ...).
- Euler function $(\varphi(n))=(1,1,2,2,4,2,6,4,6,4,10, \ldots)$.
- Any divisor-chain.

Hint. One answer for this exericise is "No."
Is the set \{ divisor-products \} closed under multiplication?

PROOF of the Divisor-Product Theorem.

Given $a_{n}=\prod_{d \mid n} b_{d}$. View the symbols b_{1}, b_{2}, \ldots as indeterminates. Every $\left[\begin{array}{c}r+s \\ r\end{array}\right]_{a}$ is a monomial fraction in b_{1}, b_{2}, \ldots
To prove: Denominators cancel. That is:
For every k, exponent of b_{k} in that fraction is ≥ 0.

- First: b_{k} is a factor of $a_{m} \Longleftrightarrow k \mid m$. (And b_{k}^{2} is not a factor.)
- Second: $\langle n\rangle!=a_{n} a_{n-1} \cdots a_{2} a_{1}$ so that:
(Exponent of b_{k} in $\left.\langle n\rangle!\right)=\lfloor n / k\rfloor$.
- Finally: Exponent of b_{k} in $\left[\begin{array}{c}r+s \\ r\end{array}\right]=\frac{\langle r+s)!}{\langle r!\langle s!!}$ equals

$$
\left\lfloor\frac{r+s}{k}\right\rfloor-\left\lfloor\frac{r}{k}\right\rfloor-\left\lfloor\frac{s}{k}\right\rfloor .
$$

That is always ≥ 0, by earlier Exercise. QED

NEW EXAMPLES. $\quad(n+1)=(2,3,4, \ldots)$ is NOT binomioid. Instead let's try the product sequence:

- $(n(n+1))=(2,6,12,20,30,42, \ldots)$.

It's Pascaloid triangle looks like

	0	1	2	3	4	5	6	7	
0	1								
1	1	1							
2	1	3	1						
3	1	6	6	1					
4	1	10	20	10	1				
5	1	15	50	50	15	1			
6	1	21	105	175	105	21	1		
7	1	28	196	490	490	196	28	1	
\vdots	\ddots								

Exercise. Prove all those entries are integers.
Compute entry $\left[\begin{array}{l}n \\ k\end{array}\right]=\frac{1}{k+1}\binom{n+1}{k}\binom{n}{k}=\frac{1}{n+1}\binom{n+1}{k}\binom{n+1}{k+1}$.

If true, then the "triangular number" sequence
$\left(\frac{n(n+1)}{2}\right)=(1,3,6,10,15,21, \ldots)$ is binomioid.
That sequence is Column \#2 in the classic Pascal Triangle:

	0	1	2	3	4	5	6	7	8
0	1								
1	1	1							
2	1	2	1						
3	1	3	3	1					
4	1	4	6	4	1				
5	1	5	10	10	5	1			
6	1	0	15	20	15	6	1		
7	1	7	21	35	35	21	7	1	
8	1	8	28	56	70	56	28	8	1
\vdots									
		\ddots							

Then Columns 0, 1, 2 are binomioid.

If true, then the "triangular number" sequence
$\left(\frac{n(n+1)}{2}\right)=(1,3,6,10,15,21, \ldots)$ is binomioid.
That sequence is Column \#2 in the classic Pascal Triangle:

	0	1	2	3	4	5	6	7	8
0	1								
1	1	1							
2	1	2	1						
3	1	3	3	1					
4	1	4	6	4	1				
5	1	5	10	10	5	1			
6	1	6	15	20	15	6	1		
7	1	7	21	35	35	21	7	1	
8	1	8	28	56	70	56	28	8	1
\vdots									

Then Columns 0, 1, 2 are binomioid.
How about Column $3=(1,4,10,20, \ldots)$?

Here's the Pascaloid triangle for Pascal Column \#3:
$\left(\binom{n+2}{3}\right)=\left(\frac{n(n+1)(n+2)}{6}\right)=(1,4,10,20,35,56, \ldots)$

	0	1	2	3	4	5	6	7	
0	1								
1	1	1							
2	1	4	1						
3	1	10	10	1					
4	1	20	50	20	1				
5	1	35	175	175	35	1			
6	1	56	490	980	980	56	1		
7	1	84	1176	4116	4116	1176	84	1	
\vdots	\ddots								

Seems to be binomioid, and we wonder:
What about the other Pascal columns?

Theorem

Every column of Pascal's Triangle is binomioid.

Our usual proof Idea.
Each Pascal column (c) is a sequence of binomial coefficients. Then each entry of the Pascaloid Triangle for (c) is a fraction whose numerator and denominator are products f various binomial coefficients.

Compute the exponent of prime poccurring in $\left[\begin{array}{l}n \\ k\end{array}\right]_{c}$. That calculation is complicated because the terms themselves are messy. But it works. (I think.)

What about Pascal rows?

Row 3 is ($1,3,3,1$) but that's really ($1,3,3,1,0,0, \ldots$).
But there are zeros in denominators for some $\left[\begin{array}{l}n \\ k\end{array}\right]$!
(More zeros in numerator than in denominator \Rightarrow set quotient $=0$.)
Pascaloid triangles for Pascal rows (suppressing zero entries)
$\left.\begin{array}{l}\text { For (1, 3, 3, 1): } \\ \\ \\ \hline 0\end{array} \left\lvert\, \begin{array}{lllll} \\ 1 & 1 & 1 & 2 & 3 \\ 2 & 1 & & & \\ 3 & 1 & 3 & 1 & \\ \\ 4 & 1 & 3 & 3 & 1 \\ & 1 & 1 & 1 & 1\end{array}\right.\right)$

For (1, 4, 6, 4, 1):

Those arrays indicate some rotational symmetry.
(Rewrite triangles to be equilateral to get better optics).
Exercise. Why does that always happen?

Here are Pascaloid triangles for the first few Pascal rows.


```
1
1
1
1
1
1
```

Have we seen those numbers before?
Here again is the Pascaloid triangle for Pascal's second column $\binom{n-1}{2}=(1,3,6,10,15,21, \ldots)$.

	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	3	1					
3	1	6	6	1				
4	1	10	20	10	1			
5	1	15	50	50	15	1		
6	1	21	105	175	105	21	1	
7	1	28	196	490	490	196	28	1

- Each row here is Column \#2 in one of the triangles above.

Note. Columns of the classical Pascal's Triangle are binomioid.
But that behavior is unusual:
In the triangle above, column $2(1,6,20,50,105, \ldots)$ is NOT binomioid.

The Pascal rows produced a sequence of triangles. Stack them to obtain an infinite pyramid of numbers:

This pyramid has 3 faces. Only ones are visible on those faces, with larger numbers inside.
This number-pyramid has 3 -fold rotational symmetry.

Remove one triangular face of ones, and the next visible face is the classic Pascal triangle.

What is the next triangular layer, cutting one step deeper?

Binomioid Pyramid Questions.

- What number is in position (n, k, m) ?

That is, at the $\left[\begin{array}{l}n \\ k\end{array}\right]$ position on the $m^{\text {th }}$ level.

- Each entry of this Pyramid is a positive integer equal to a fraction involving several $\binom{n}{k}$'s.
¿ Is there a combinatorial interpretation?
Does entry $(n, k, m)=$ the size of some natural set ?
Possibly this will lead to a different proof that all entries are integers.

General Binomioid Pyramids.

Every sequence (c) has its Pascaloid Triangle Δ_{c}.
Each row of triangle Δ_{c} has its own Pascaloid triangle. Stack those to form the Binomioid Pyramid for (c).

- There is 3 -fold symmetry.
- Pascaloid Triangles for the columns of Δ_{C} appear as slices of that pyramid.
- Entry at position (n, k, m) is a fraction involving products of various $\left[\begin{array}{l}r \\ s\end{array}\right]_{c}$ terms.

Definition. Sequence (c) is binomioid at all levels if all entries of its Binomioid Pyramid are integers.

Binomioid Pyramid Questions.

$(n)=(1,2,3, \ldots)$ is binomioid at all levels.

- Are divisor-chains always binomioid at all levels?
- Are divisor-products always binomioid at all levels?
- Any other examples?

THE END

Daniel Shapiro

Ohio State University Ross Mathematics Program
July 2020

