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Adolescent fasting glucose and midlife brain health
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Context: It is unclear how adolescent glycemic status relaiérain health in adulthood.
Objective: To assess the association between adolescemigfasiisma glucose (FPG) and MRI-
based brain measures in midlife.

Design: Between 1973 and 1992, the Bogalusa Heart StuepjRBollected FPG from children
3 to 18 years old, and followed up between 199224idB. Cognitive tests and brain MRI were
collected in 2013-2016 and 2018.

Setting: Observational longitudinal cohort study.

Participants: Of 1298 contacted BHS patrticipants, 74 completedeing and 50 completed
MRI.

Main Outcomes and Measures. Mean FPG per participant at ages less than 2@02@nd over
40 years old; brain white matter hyperintensitywoé (WMH), gray matter volume (GM), and
fMRI activation to a Stroop task; tests of logieald working memory, executive function, and
semantic fluency.

Results: At MRI, participants were middle-aged (51.3 +4 gears) and predominantly female
(74%) and Caucasian (74%). Mean FPG was impained, 8, and 9 participants in pre-20, 20-
40, and over 40 periods. Pre-20 mean FPG abover¢h20 median value.¢., above 83.5
mg/dl) was associated with greater WMH (mean diéffiee: 0.029 percent of total cranial
volume, CI: [ 0.0059, 0.052], p=.015) and less fMitivation (-1.41 units, [-2.78,-0.05] ,
p=.043) on midlife MRI, compared to below-medianamé&PG. Controlling for over-40 mean
FPG status did not substantially modify the assmeia. Cognitive scores did not differ by pre-
20 mean FPG.
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Conclusions: High-normal adolescent FPG may be associatedpgitlinical brain changes in
midlife.

In this study, adolescent fasting plasma glucose in the high-normal range was associated with poorer
brain structure and function in midlife irrespective of midlife fasting plasma glucose values.

Introduction

Type 2 diabetes mellitus (T2DM) is present in 028% of US adults aged 65 years or older and
prediabetes is present in more than 48%3.2DM doubles the risk of cognitive impairment and
dementia and greatly increases health care neeldsoats® Similarly, prediabetes increases
risk for dementi&. However, it remains unclear whether improvingeglyic control is a viable
approach for reducing risk of cognitive impairmenprediabetes or T2DM* 1118

One reason for inconsistencies in the relationbbipreen cognitive outcomes and glycemic
control is that lifespan exposures to the metaliturbances associated with T2DM, as well as
clinically-silent brain injury, are rarely accoudt®or. The progression from cardiometabolic
risk factors, to insulin resistance, to the betadysfunction and hyperglycemia that characterize
T2DM, develops insidiously over decades, startimgarly as childhoot®?° Similarly, the
brain changes that culminate in Alzheimer-related @ascular-related neuropathology develop
insidiously over many yeaf$?> T2DM-related and cognitive-decline-related biptal
mechanisms may interact to impact the brain in deryways during their progressiéfiz® 2%
Thus, it is possible that metabolic disturbancesaaly as childhood could influence brain health
and cognitive functioning decades later, independemetabolic status at that later tirtte”
However, at this time it is not clear what effetgny, metabolic exposures in childhood and
young adulthood may have on brain health and civgriinction in midlife and old age.

One specific unknown is whether clinical threshdtatsidentifying prediabetes and T2DM
are adequate to identify children and young adailiacreased risk of adverse brain outcomes
decades later. Fasting plasma glucose (FPG) thidssfor the clinical diagnosis of T2DM: (

126 mg/dl) and prediabetes {00 mg/dl) are based on an extensive evidencelip&sgg these
thresholds to risks of various adverse outcoffiesiowever, this evidence is based primarily on
FPG exposures from midlife onward, and late-lifgrative decline was not considered when
determining the thresholds. Among older adultsGFERthe high end of the normal range
(“*high-normal FPG”) may be associated with redulssadn tissue volumes and increased rates of
brain atrophy’’*® Among children, high-normal FPG may be associatitld poorer beta cell
function concurrentf?*°and in the futuré’. But there is little data relating FPG to brain
outcomes to determine whether current clinicalghotds are adequate to identify individuals at
increased risk of cognitive decline.

This study assesses the associations between FifBesgnt stages of the lifespan and
cognition-relevant MRI markers of midlife brain ft#&"?****® and assesses the adequacy of
current clinical thresholds to identify individualdiose glycemic status is associated with an
increased risk of adverse brain outcomes, using fdamt the Bogalusa Heart Study (BHS).

Materialsand M ethods

Study sample.

The BHS began in 1973 as a community-based cohaty ®f atherosclerosis and risk factors
for cardiovascular disease in a bi-racial popurattbchildren in a semi-rural town in
southeastern Louisiafa Most participants enrolled as children, and maitgnded regular
follow-up visits through adulthood. Between 2018 2016, cognitive tests were administered
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for the first time to 1,298 participants. Inclusioriteria for this study included prior
participation in BHS, completion of cognitive tegj lack of MRI contraindications, and right
handedness (to prevent confounding effects of hdireks on completion of fMRI tasks). A
CONSORT diagram is shown in Figure 1. Briefly, #98 individuals who completed
cognitive testing previously were contacted abbig project via mailed flyers. From that
group, 74 individuals completed screening proceslarel 9 were deemed ineligible due to MRI
contraindication or left-handedness. Of the remngi®5 individuals, 50 completed the required
MRI; 2 failed to arrive for the MRI; 1 had to hé#lfte MRI early due to claustrophobia; and 12
were ready to be scheduled for MRI at the timestindy reached its target of 50 completers.
Participants in this study provided informed corisérhe study was overseen by the
Institutional Review Board of Pennington BiomediBasearch Center.

Physiological measures.

Measurement of FPG and insulin have been descpiteadously>*’. Both were measured
following a standardized protocol at a centralifazbratory. FPG were analyzed by an
enzymatic method using the Beckman glucose andfyz8asma insulin concentrations were
measured using a radioimmunoassay procedure (Pésidebarmacia Diagnostics, Piscataway,
NJ).

MRI acquisition.

Brain MRI scans were performed on a GE Discoverg&Inner at Pennington Biomedical
Research Center. A 32-channel phased array hélasasoused. Sequences included: 1. T1-
weighted 3D BRAVO (voxel size, .94 x .94 x 1.2 fvoxel array, 256 x 256 x 140; flip angle,
12 degrees; NEX, 2; Tl, 450; bandwidth, 31.25;ltota time, 6:41); 2. Axial 2D FLAIR

(voxel size, 1.07 x 1.07 x 2 nipvoxel array, 224 x 224 x 69; flip angle, 160 dzzg; TE, 95

ms; TR, 9000 ms; Tl, 2250 ms; NEX, 1; bandwidth23] total run time, 4:58); 3. Axial 2D
gradient echo EPI BOLD (voxel size, 3x3x3 fwoxel array, 64x64x43; flip angle, 90 degrees;
TE, 35 ms; TR, 2500 ms; NEX, 1). Participants werespiratory monitoring belt and pulse
oxygenation sensor to model respiratory and cafi@cts on the BOLD signé.

Cognitivetedts.

Cognitive testing included Logical Memory | anddbts of verbal memory [14], Digit Span
Forwards and Backwards tests of attention and cdrateon [14], Trail Making Test (TMT),
part A, and the Digit Coding test.[14] The LettedaNord reading tests, from the Wide Range
Achievement Test (WRAT), measure participants’igbib decode and offer a general level of
academic achievement. Measurement of participan¢civocabulary was used to further
reflect achieved education.[15]

fMRI task.

Our Stroop task tested inhibitory control in th@isxt of negative feedback and time-pressured
responsed’. In each trial, for 400-5000 ms participants sme& probe word and four target
words that were names of colors. The task wagdntify the target word whose color matched
that of the probe. In the congruent (incongrueatjdition, word meaning matched (did not
match) the color it was printed in. Correct (imeat) responses on 3 consecutive incongruent
trials prompted a 300 ms reduction (increase)imudtis duration. Four 52-60 second
incongruent trial blocks were interleaved with sguuent trial blocks, each of which had the
same number of trials as the previous incongruktkb The inter-block interval was 10-17
seconds. Stroop task performance was summarizedns of task accuracyéd., percent of
trials answered correctly), mean reaction timesotogruent and incongruent trials, and the so-
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called interference effect€., the difference in mean reaction times betweearigouent and
congruent conditions).

Structural MRI data analysis.

Post-processing of structural MRI data follows td@ghes described previoust{®® Key

FLAIR processing steps include manual removal of-bmin elements from the FLAIR image
by operator guided tracing of the dura mater withim cranial vault, resulting in delineation of a
total cranial volume (TCV) region; MRI non-unifortyicorrection of the TC\?* thresholding
of TCV into brain and non-brain tissu&sfitting a single Gaussian distribution to theihra
tissue intensity distribution and labeling of abixels with intensity greater than 3.5 standard
deviations above the mean as WNH Key T1-weighted image processing steps incluéd M
non-uniformity correctiol’; and segmentation of gray matter (GM), white migitéM), and
cerebrospinal fluid (CSF) by a Bayesian maximunallkood expectation-maximization
algorithm®®. The primary measures of interest in subsequealysis were volumes of WMH,
GM, and WM, each expressed as a percentage of TCV.

fMRI data preprocessing.

Preprocessing of fMRI included slice timing corrent head motion correction, smoothing, co-
registration to the T1-weighted image, and warpitigwveighted data to a standard coordinate
frame (using Statistical Parametric Mapping 12)dz& and respiratory time series were
regressed out of the data using RETROIC®Rime points with excess head rotation (>1.5
degrees) or translation (1.5 mm) were removed faoalysis. Voxel time series were entered
into a first-level general linear model, where éxperimental design was modeled as boxcar
functions convolved with the canonical hemodynaragponse function.

fMRI activation analysis.

Theinhibitory controlcontrast was measured between congruent and ingamgolocks in the
Stroop task. Data from incorrect, missing, or gtentive (i.e., < 200 ms) responses were
removed from analysis. The 3D coordinates of R@4ds tepeatably show fMRI signal
differences in this version of the Stroop task urtde inhibitory control contrast (covering
occipital, fusiform, angular, middle frontal, infer frontal, superior frontal, cingulate, and
middle temporal gyri; and within the cerebellumegineus, insula, lentiform nucleus, thalamus)
were identified from a published repdtt The mean beta value for the inhibitory contraitcast
among all voxels in an 3-mm-radius sphere centatedch ROI location was calculated.
Principal components analysis (PCA) was then agpbehe set of all ROl means. PCAis a
dimension reduction technique that reduces a darge set of measurements (in this case the
ROI means) to a smaller number of numbers (the P&@icient$ that, together, explain the
greatest amount of variability in the measuremel& reduced each set of ROl means to a
single PCA coefficient that provided a univariabensnary of the overall level of activation of all
ROIs under the inhibitory control contrast (referte hereafter as “Stroop activation”).

Statistical analysis.

Statistical analysis focused on summarizing FP@iwidifferent epochs of the lifespan, and
relating FPG within those epochs to MRI outcome suess. We separated all FPG
measurements into three epochs: those collectedebafe 20 (“pre-20”), between ages 20 and
40 (*20-40”), and after age 40 (“over-40”). Forchandividual, the mean FPG within each

epoch was calculated. The median pre-20 mean F&&Ghen calculated, and mean FPG values

were categorized in terms of whether they werevodhos threshold (“low-normal”) or above it.
The range of mean FPG values above the threshoddeised to as “high-normal” in the pre-20
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epoch since no values were in the impaired rangi@isrepoch; and as “high-normal or
impaired” in the 20-40 epoch since 2 individuald kalues in the impaired range in this epoch.
To assess possible legacy effects of adolescent Fie@ levels on midlife MRl measures,
ANOVA models were used to identify differences iflRMand cognitive measures between
individuals with low-normal and high-normal meanG-Buring the pre-20 epoch. Similar
ANOVA models were used to identify differences iflRMand cognitive measures between
individuals with low-normal and high-normal or impgad mean FPG during the 20-40 epoch.
Each of these models included the mean FPG cat@gtigt epoch as the primary covariate of
interest, and sex, race, and age at the time of &dRiuisance covariates. In addition, we added
mean FPG category in the over-40 epoch as a n@sanariate, to assess whether associations
between FPG status earlier in life and midlife Mtiables was independent of midlife FPG
status.

Results

Description of sample.

A summary of participant characteristics is showiable 1. Participants were in middle age at
the time of their MRI (mean age: 51.3), predomihafgmale (74%), and were Caucasian (74%)
or African American (26%). The average participardvided FPG measurements covering a
span from early adolescence (12.1 years) to miagke(50.4 years). The number of FPG
measurements per participant was approximately32per epoch on average (an average of 2.9,
3.8, and 2.4 measurements in the pre-20, 20-40p@®d40 epochs). Distributions of gray
matter, white matter, and WMH volumes were sinmidathose of a similar, nominally-healthy
epidemiological cohort of similar a§é Demographic variables, cardiometabolic variakéesl
cognitive measurements were largely similar in gnsup compared to the broader set of BHS
participants they were sampled from (Table 1). @imeent group displayed higher scores on the
Digit Coding test than the broader sample did, lzadi provided a relatively larger number of
FPG measurements during the 20-40 epoch. Thentwgreup had relatively lower
representation of male participants and African Aoaa participants than the broader sample
did.

Glycemictrajectories.

Trajectories of FPG over time for each participanmt plotted in Figure 2, along with boundaries
between epochs, accepted thresholds for the diegobgrediabetes>(100 mg/dl) and T2DM

(> 126 mg/dl), and the median pre-20 mean FPG vaded to define the low-normal group.
The data shows a general trend of greater FPGbiliyian later epochs, with some individuals
increasing significantly in the over-40 years. Thenber of individuals with mean FPG values
in the prediabetes or T2DM range differed by ep@eh-20: 0; 20-40: 2; over-40: 9). Of the 9
individuals with mean FPG values in the prediabeteE2DM range in the over-40 epoch, 2 had
mean FPG values in the prediabetes or T2DM rangk2dad mean FPG values in the high-
normal range, in the 20-40 epoch. Of those 9 iddiads, 4 had mean FPG values in the high-
normal range in the pre-20 epoch. Other cardiobeditaindicators during each epoch are
shown in Table 2.

Mean pre-20 FPG and MRI measures.

High-normal pre-20 mean FPG was associated withifgigntly greater WMH volume as a
percentage of TCV (mean difference: 0.029 perceht, 0.0059, 0.052], p=.015) and
significantly less Stroop activation (mean differen-1.41 units, 95% CI [-2.78,-0.05], p=.043),
compared to low-normal pre-20 mean FPG (see Figur®ifferences in GM, WM, and CSF
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volumes between those with high-normal and low-radnone-20 mean FPG were not
statistically significant. Correcting the MRI meass for TCV did not substantially modify
these associations. When over-40 mean FPG wasl &oltdleese models, the significant effects
of mean FPG category on WMH volume (p=.021) anddjtractivation (p=.045) remained
statistically significant, with minimal attenuatiom significance.

Mean 20-40 FPG and MRI measures.

High-normal or impaired mean FPG in the 20-40 epwahk associated with significantly greater
WMH volume (mean difference .029 percent, Cl [04000.058], p=.047), less GM volume
(mean difference -0.97 percent, ClI [-1.91, -0.083],043), and a trend toward less Stroop
activation (mean difference -1.57 units, CI [-3.27,3], p=.070), compared to low-normal 20-40
mean FPG. Differences in WM and CSF volumes betvileese with high-normal or impaired
and low-normal 20-40 mean FPG were not statisticatjnificant. Correcting the MRI
measures for TCV did not substantially modify thassociations. When over-40 mean FPG
was added to these models, the significant effefaisean FPG category on WMH and GM
volumes were no longer statistically significant.

Stroop task performance and cognitive tests.

Stroop task accuracy (mean 69% +/- standard dewi&til%) was similar to that seen in one
prior study utilizing the same, adaptive versionhef task®®. Mean reaction time (1645 +/-
617 ms) was also in line with that of a prior puation®®, None of the performance measures
were associated with mean FPG status in the p-20-40 epochs, in models that controlled
for sex, race, and age at the time of MRI scanpfald5). Scores on none of the cognitive tests
were associated with mean FPG status in any e@tigh>05).

Discussion

In this study, middle-aged, Deep Southern, sematindividuals who during early
adolescence had exhibited mean FPG in the highalaange i(e., above a low-normal
threshold, but still below the accepted cutoffgoediabetes) showed signs of poorer MRI-based
markers of brain health in midlife, even after ¢ohing for midlife FPG, suggesting a persistent
legacy effect of pre-20 glycemic status as a rigkk@ar. There are two key implications of this
finding. First, it reinforces the importance oéehted early-life FPG as a risk marker by
identifying poorer midlife brain health as anotpessible outcome of f:°°®°.  Second, it
suggests that established clinical thresholds BNl (FPG> 126 mg/dl) and prediabetes (

100 mg/dl) may be inadequate to identify adolescaiitth an increased risk of poorer midlife
brain health.

The finding that early-life FPG may be associatéti brain health decades later adds to
a growing literature suggesting that early life esx@nces influence health outcomes later in
life®** This literature points to critical periods duriwhich exposure to environmental or
physiologic stimuli induces “programming” of a fikéuture aspect of organ functidn
Differing brain regions grow at different pacesidgrthe first three decades of Iffé and
complex hormonal signaling events modulate thagedtories® "%, Because insulin- and
glucose-related signaling molecules are involvedrain growth and maturatidd 'S it is
plausible that metabolic disturbances associatéd elevated FPG could result in consequences
for brain development proximally as well as yeats ithe future. Testing this hypothesis will
require longitudinal series of brain and metaboigasures collected throughout adolescence,
young adulthood, and midlife.
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A striking aspect of our findings is that no edifg mean FPG values were in the
prediabetes or T2DM range. Individuals who hadjthnormal” mean FPG values in that epoch
(greater than 83.5 mg/dl, less than 100 mg/dl)dradter WMH volume and less brain
activation to a cognitive task. Increased riskpadrer outcomes among those with high-normal
FPG has been reported previoudly?®3%*! although large-scale epidemiological data incigdi
adolescent and midlife data is highly limited. r@tudy was too small to determine whether
midlife brain outcomes scaled continuously anddmewith adolescent mean FPG across the
entire normal range, or whether there is a criticedshold value above which poorer brain
outcomes are especially probable. Large-scaleestud these questions are needed, because an
association between high-normal adolescent FPGdwerse midlife outcomes could in the long
run trigger a shift in clinical practice toward rd#ying such individuals and intervening early to
lower FPG.

Associations between mean FPG and midlife bratoaraes were similar within
adolescent and early adulthood epochs, with twalietdifferences. First, midlife gray matter
volume was associated with FPG status only in yadgthood. Prior studies suggest that gray
matter deficits, representing cell death, repreadirtal common pathway that can follow
multiple modes of cell distress, including lesionmation (represented by WMHSs) and neuronal
dysfunction (represented by fMR#)’""® Thus, if the young adults high-normal or impdire
mean FPG were exposed to a greater duration origeekbrain injury processes than
corresponding adolescents, we would expect gratemaeficits to appear only in the young
adults. Second, while associations between highralbmean FPG in the adolescent epoch and
poorer midlife brain outcomes remained significaftér controlling for midlife FPG status, the
same was not true of high-normal or impaired me&a@ n the young adulthood epoch. This
suggests that the young adults with high-normatgaired mean FPG may simply be ones who
go on to have elevated FPG in midlife and thus tigive poorer brain health due to midlife
status alone. A larger study is needed to detexitma degree to which both epochs of the
lifespan are independently associated with midireen outcomes.

The key strength of this study is its utilizationitespan data from a large, community-
based, bi-racial, Deep Southern, semi-rural epidimical cohort. The key limitation is its lack
of brain MRI concurrent with early-life FPG. THimitation was unavoidable—functional MRI
did not become available until roughly 20 yearsiatie first FPG measurement. Our small
sample size and lack of other glycemic measurds asitiemoglobin A1C (which also was not
widely utilized until long after cohort initiatiorgre additional limitations.

In conclusionjndividuals with mean FPG at the high end of thead range during
adolescence went on to exhibit more WMHSs and g3l factivation during a cognitive task at
midlife, independent of midlife mean FPG. The tsscould have implications for identification
of youth at risk of poorer midlife brain health.
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Figure 1: CONSORT diagram for the current study.

Figure 2: Real trajectories of fasting plasma glucose idgparticipants are shown. Mean
fasting plasma glucose values were calculated guhie pre-20, 20-40, and over-40 periods of
the lifespan. Individuals were categorized aceaydo whether the mean fasting plasma glucose
value was above, vs. below, the pre-20 sample mediae of 83.5 mg/dl.
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Figure 3: White mater hyperintensity (WMH) volume at a mielMRI was significantly
elevated (left) and fMRI activation to a Stroopktagas significantly less (right), among those
who had mean FPG above the median value duringré@0 period.

Table 1: Demographic, cardiometabolic, and neugnitive characteristics of participants in the
current study as well as participants in the mesént Bogaulsa Heart Study cognitive
assessment, from which current study participaet®wampled. P values for t tests that assess
differences between the two groups are provideterthird column.

This study Most recent BHS p-value
cognitive assessment

N 50 1298
Sex (% male) 26 41.1
Race (% African American) 26 34.5
Ageat first FPG (years) 12.9+/-4.8 12.4+/-6.0 0.5606
Age at most recent FPG (years) 48.8 +/- 4.7 48.1+/-5.2 0.3488
Number of FPG measur ements pre-20 25+/-1.3 2.6+/-1.2 0.5644
Number of FPG measurements 20-40 3.6+/-12 2.7+/-1.3 <0.001
Number of FPG measurements over 40 2.1+/-12 1.8+/-1.2 0.083
BMI (kg/m?) 30.9+/-74 31.4+/-7.8 0.656
SBP (mm Hg) 121.3 +/- 15.4 123.6 +/- 17.3 0.3546
DBP (mm Hg) 76.3+/-9.3 78.8+/-11.7 0.1358
Total cholesterol (mg/dl) 186.6 +/- 34.3 192.7 +/- 40.4 0.2925
Digit Coding 65.6 +/- 16.4 58.8 +/- 17.7 0.0076
L ogical Memory 2 Total Score 17.2+/-6.9 16.0+/-7.3 0.2533
Digit Span Backward 7.7+[-2.2 7.7+/-2.5 1
TrailsMaking Test Part B (seconds) 57.4 +/- 28.8 62.3+/-30.1 0.2581
Ageat MRI (years) 51.3+/-4.4 NA
Gray matter volume on MRI (% of TCV) 41 +/-1.4 NA
White matter volume on MRI (% of TCV) 34+/-1.6 NA
WMH volume on MRI (% of TCV) .03 +/-.04 NA

Table 2: Metabolic markers measured at clinicatviwithin the three time periods (mean +/-
standard deviation). Values are broken down byrtean FPG measured at clinical visits within
that time period. * Significantly different from mesponding low-normal mean FPG group by
two-tailed T tests.

Below age 20 Ages 20-40 Above age 40
Low-normal High-normal Low-normal High-normal or Low-normal High-normal or
mean FPG mean FPG mean FPG impaired mean mean FPG impaired mean
FPG FPG
N 22 26 37 12 6 42
Mean fasting 79.0+/-3.3 87.2+/-3.93* 77.8+/-3.85 89.3+/-7.2* F9-3.13 97.4+/-12.9*
glucose
Mean BMI 18.2+/-2.4 22.1+/-5.5* 27.9+/-6.5 33.8+1-7 26.0+/-3.1 31.6+/-6.6*
Mean HOMA 2.3+/-1.1 2.83+/-1.2 1.75+/-.91 4.1940-4. .97+/-.25 3.8+/-2.1*
Mean SBP 101.8+/-8.0 106.4+/-8.0 108.8+/-8.9 11813t3* 124.5+/-22.9 120.6+/-13.8
Mean DBP 64.0+/-6.4 66.5+/-6.4 72.1+/-5.2 75.5687. 78.4+/-13.5 78.0+/-7.9
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