Solar Hydroponics Monitoring Vehicles SAC Undergraduate Research Project

Tepher Ward ~ Michelle Mata ~ Juli Williams

ALAMO COLLEGES

SAN ANTONIO COLLEGE

August 22, 2016

Team Members

Tepher Ward - Team Lead; Mechanical Design
 Michelle Mata - V1 Arduino Programmer
 Juli Williams - V2 Raspberry Pi Programmer

Introduction to Hydroponics

- Soilless farming
- Shipping container is 320 sq. ft.
- Controlled environment
- ReEnergize initiatives

Requirements

Solar Hydroponics Team
 Remote control
 Data tracking via WiFi

Environmental

✓ Temperature ranges from 70° - 90° F

✓ Humidity ranges from 60% - 80%

ReEnergize Program

✓ Cost-efficient

✓ Adaptable for future enhancements

Project Goal

The Hydroponics Monitoring Vehicles team set out to construct and compare two vehicles to determine which would be better suited to meet all needs, including end-user, environmental, and program requirements.

Design for V1

Construction

- ✓ Tetrix parts
- ✓ Tetrix motors
- Electronics
 - ✓ Arduino UNO
 - ✓ WiFi Shield 101
 - ✓ Motor driver

Programming

- ✓ Windows
- ✓ Arduino IDE
- ✓ Arduino libraries

Design for V2

Construction

- ✓ Hardware store parts
- ✓ Tetrix motors
- Electronics
 - ✓ Raspberry Pi (RPi)
 - ✓ Motor driver

Programming

- ✓ Linux
- ✓ Minibian
- ✓ Apache

Results for V1

Construction

- \checkmark Constraints of components
- \checkmark Durability of parts
- Electronics
 - ✓ Sufficient drivers
- Programming
 ✓ Arduino pin overrides
 ✓ Shield limitations

Results for V2

Construction

Adaptability of componentsDurability of parts

✓ Balance and weight distribution

Electronics

✓ Sufficient drivers

Programming
 Web-accessible controls
 Controlled stops

Conclusions and Findings

End-user Requirements Met

✓ Both V1 and V2

Program Requirements Met

- ✓ Arduino and Raspberry Pi
- ✓ V2 More Structurally Adaptable and Flexible

✓ V2 More Cost-efficient (\$170 vs \$420 for materials)

The Future of SAC's RC-HMVs

✓ Line sensors

✓ Swivel-mounted front camera

 \checkmark Better traction and weight distribution

✓ Data tracking via WiFi

✓ Camera hoisting mechanism

✓ Moisture-proof

✓ A cool name and logo!

Acknowledgements

Team Advisors and Supports

Mr. Steven Lewis - Director of Eco Centro, Project Advisor

Mr. Klaus Bartels - Adjunct Faculty, Physics, Engineering, and Architecture Department, Project Advisor

Mr. Ben Uresti - Academic Lab Technician for the MESA Center, Technical Advisor

Ms. Bly Korseau - Engineering Administrative Assistant

Ms. Barbara Knotts - Adelante Tejas Project Grant Director

Ms. Patty Medina - Exitos Grant Director

Ms. Dee Dixon - MESA Center Coordinator

Ms. Sylvia San Miguel - Administrative Assistant

Ms. Susan Paddock - LSAMP/CIMA Grant Co-PI

Ms. Susan Espinoza - Director of College Grants and Development

Dr. Robert Vela - SAC President

Questions?