

The rising STAR of Texas

Problem Statement

- Current Process is Manual
 - Before every milk run, drivers must;
 - Observe material requirements
 - De-trash
 - Load carts

Project Purpose

- Increase Plant Efficiency
- Decrease Production Floor Clutter
- Reevaluate Material Flow

Objectives

Product Functions:	Design Specifications (Performance Targets)
Cycle Time Data	Material Consumption Milk Run Routes De-Trashing
Material Flow map	Existing Drop Locations Material Transports Milk Run Routes
Data Analysis	Automatable Parts Determination Kanban Levels Efficiency of Process' Safety Cost Savings
Design (Stretch)	Warehouse Re-Design Milk Run Rerouting Production Floor Re-Design

Current Layout

Facility Ranger Layout

De-trashing

I 1.03 - Automated Milk Run Ordering System

Eric Brady, Rosa Rodriguez, BJ Iroha, Brandon Willis

Ingram School of Engineering

Design Approach					
Define	Measure	Analyze	Improve	Control	
 Statement of Work (SOW) Project Statement Project Purpose 	 Data collection: De-trashing cycle times Identify part numbers and dimensions Identify delivery method and its dimensions Production rates 	 Labor Content Investigation (LCI) Methodology Linear Program Models and Software (AMPL,Excel) Simulation Software (Arena) 	 Currently, two options for an Automated Milk Run Ordering System have been conceptualized Option A: Output Based Ordering System Option B: Barcode/RFID Scanning Ordering System 	 Frequent checking of Kanban min/max levels Periodic checking of Kanban min/max levels after trail period Adjust starting stock on production floor as needed 	
Measure Phase					
	Ranger Line B				

Ranger Line B					
	Part Numbers				
GPEC Model	Housing	Lid	Connector	Lytic	
24	A 2 C 7 2 2 1 2 9 0 0 0 0	4207221200200	Tan: A2C7347840200	NI / A	
ZA	A2C7331280000	AZC/331290300	Gray: A2C7449700100	N/A	
4	A2C743070000	A2C7565140000	A2C7420100000	A2C5339442500	
Dolivory Mothod	ST40 Toto	magrack	milkrup material carts	trays via push	
Delivery Method	5140 TOLE	IIIdgrack	minki un material carts	cart/stockchaser	
	15inx23.75inX11in	holds 8 mags, 10			
Delivery Method	outter	lids each	30inx31.75in outter		
Dimensions	13.25inX21.75inX1	57.5inx24.5inx27.	27.5inx19inx28.5in inner		
	0.5in inner	5in			
Stored Location	stockroom prep	Stockroom	Stockroom	Stockroom	
Stored Location	area	Stockroom	SLOCKIOOIII	Stockroom	
Droplocation	refer to map	refer to map	refer to man layout	refer to man lavout	
	layout	layout	Telef to map layout		

Part numbers, location, delivery method and their dimensions.

Vitesco Technologies Future Warehouse Layout

Future Plans

4			18	
5				
20	Anaylisis And Presentation			
21	Kanban Level Determination	0%	1/28/22	212712
22	Delivery Method Determination	0%	1/28/22	2/27/2
23	Facility Layout Planning	0%	2/27/22	3/20/2
24	System Modeling	0%	2127122	3/20/2
25	Presentation of Alternatives	0%	3/20/22	5/3/22
				Sr

• Continue to gather data Analyze data to find appropriate min/max Kanban levels • Create simulations of improved ordering system Improve milk run routes and drop locations

Rack

Lid

ST40 Tote

oring Semester Milestones

VILESCO TECHNOLOGIES

Evaluation Criteria

	Relative		Actual		Wt.
Objectives	Weight	Metric	Results	Score	Score
1. Bulk Prep Kanban	0.70	Pass: Identify material/part numbers that can be delivered in totes, cycle time to de-trash and store in totes, determine min and max and quantity of each part/tote. Fail: Data incomplete for Ranger line E; no recommendations for bulk prep Kanban.	TBD	TBD	TBD
2. Automated Milk Run Routes	0.30	Pass: Map routes, determine drop locations, identify part numbers for each route and determine how material is presented to line. Analyze data and recommend automation for Just-in-Time delivery of materials. Fail: Data incomplete; no recommendations for Just-in- Time delivery of materials.	TBD	TBD	TBD

 Evaluation Methods and Acceptance Criteria & Metrics

Analyze Phase

All data collected will be analyzed using available software from Texas State University and Vitesco Technologies.

Labor Content Investigation (LCI) Methodology

Linear Program Models and Software (AMPL, Excel)

Simulation Software (Arena)

Team Members

From Left to Right Brandon Willis Eric Brady

- Rosa Rodriguez
- BJ Iroha

Sponsor / Faculty

Sponsor: Katie Esparza

Instructor: Dr. Michelle Londa