
Printing:
This poster is 48” wide by 36” high.
It’s designed to be printed on a
large

Customizing the Content:
The placeholders in this
formatted for you.
placeholders to add text, or click
an icon to add a table, chart,
SmartArt graphic, picture or
multimedia file.

T
from text, just click the Bullets
button on the Home tab.

If you need more placeholders for
titles,
make a copy of what you need and
drag it into place. PowerPoint’s
Smart Guides will help you align it
with everything else.

Want to use your own pictures
instead of ours? No problem! Just
right
Change Picture. Maintain the
proportion of pictures as you resize
by dragging a corner.

E

Project Problem ProgressGraphical User Interface (GUI) Layout

I2.01 Sky Dashing- GUI DEVELOPMENT

Jorge Dozal, Ja'Brianne Cleveland, Melissa Villatoro, Ryan Huston

Ingram School of Engineering

Project Objectives

Project Purpose

Background Information

Python and ROS integration

Future Goals

Team Members

Acknowledgements

❑ Drones are a pristine technology which is currently lacking an
all-in-one Graphical User Interface (GUI) which monitors
drone health and domestic flying conditions in its area.

❑ Developing accurate flight paths that incorporate local
weather data as well as drone diagnostics from sensory data
will aid in establishing sustainable drone ecosystems for
commercial and residential use. This requires a
multidisciplinary approach.

❑ To further enable a “Highway In the Sky”, the development of
user-friendly GUI will display a geographic flight map, pre-
flight diagnostics of drone, and a final FLY/NO FLY decision for
each drone mission.

❑ The creation of an all-in-one dashboard will allow users to
actively monitor if the flight mission is suitable considering
current weather conditions in the area and the other variables
previously mentioned.

We would like to give a special thanks to the following individuals:
❑ Jeffrey Michalski, Airogistic
❑ Dr. Michelle Londa, Texas State
❑ Kathryn Budde, Texas State
❑ Alexander Little, Texas State
❑ Ethan Blagg, Nexus

❑ Development of improved GUI using Python and ROS2 for
drone diagnostics which gives the user pre-flight data that
also determines Fly/NO-Fly Decision.

❑ The GUI will visually display a geographic flight path,
preflight drone/weather diagnostics, and a Fly/NO-Fly
decision using images and easily distinguishable choice

symbols.
❑ Only Python will be used to :

❑ Creates Flight Path
❑ Store and Parch Diagnostic Data
❑ Creates GUI

❑ In the beginning, there existed a GUI which considers only local
weather station information for preflight wind speed,
temperature, and chance of rain.

❑ The text is too small.
❑ User interaction with the current GUI does not allow for a

complete data analysis of current conditions for the drones pre-
flight.

❑ Final decision should be more evident.

❑ Future improvement to the GUI will be fulfilled by the
following responsibilities:

❑ Updating GUIs to direct/real-time data.
❑ Dynamic Map that displays a flight

path, drone, launch/landing stations, and local
weather stations

❑ Have second layer open by clicking icon, showing
more depth diagnostics.

❑ Surveying and getting proper idea of GUI before
making multiple iterations

❑ Throughout the duration of the GUI Development Design, the
team has made tremendous progress such as:

❑ Evaluation of two visual development applications
and then further determining we shouldn’t
continue with either application.

❑ Python was most optimal based upon scalability,
specific project performance measures,
boundaries, and constraints.

❑ Creating a functional GUI using Python.
❑ Pre-Flight and In-Flight views that updates using

ROS2BAGs from Airogistic EE as well as parching
and displaying weather diagnostics.

❑ Configuring an ultimate Fly/NO-Fly decision
based off drone and weather diagnostics.

Figure 1: Beginning State of GUI

Weather Data: Using Python library
“requests” to parch information from
online weather stations, the GUI will
display the weather, temperature, and
wind speed from the launch/landing
stations and along the flight path. All
pre-flight.

Flight Path: Uses a static
satellite map of flight path
drone will take. Velocity is
used update the direction the
drone moves on the map.

Fly/No Fly Decision: Utilizing the parameters from the pre-
flight weather/drone diagnostics, if-statements are looped for
each data point until the function stops. During the loops, the
dashboard is updated every 500 milliseconds to display two
decisions. The first being the drone data approval. This
decision is based if the drone optics are satisfactory to fly or
not. The second decision will be weather data approval. This
decision is based if the weather optics are satisfactory to fly or
not. Finally, a big FLY/NO-FLY icon will be decided based on
both approvals.

Pre-Flight Drone
Diagnostics: Using
the provided data
stored in ROS2BAGs
by Electrical
Engineering Team,
Python library
sqlite3 will display
information from
the ultrasonic
sensor, force mount
weight sensor, RPM
sensor, drone
battery percentage
and propulsion. All
pre-flight.

Ryan
Huston

Melissa
Villatoro

Ja’Brianne
Cleveland

Jorge
Dozal

Figure 2: Pre-Flight View

Figure 8: Team Picture

Figure 3: In-Flight View

In-Flight Drone Diagnostics:
Focused on drone optics in
correlation with flight path.
Python will parch the
information the drone sends
back and display its flight
speed, altitude, coordinates,
and battery power.

Figure 2: Pre-Flight View

❑ Using SQLITE3
❑ Opens .yaml file to find data entries in the (x,y) form
❑ Sets first_float and second_float to equal respective

(x,y) for simple future reference
❑ Second_float is the true parameter that determines

decision

Figure 4: ROS Section of Algorithim

