

Project Description

The Electro-Sonic Analog Synthesizer is a musical device that uses analog components to create sounds that match musical notes.

Key Functions:

- Battery powered
- Keyboard controlled
- Plays through a speaker
- \circ Tuned to A = 440 Hz within 12 musical cents
- Generates a square, triangle and sine wave

Why Electro-Sonic

Electro-Sonic provides a physical and interactive display of an analog system and how it relates to music theory.

This synthesizer will be used as a learning tool for Dr. Compeau as he teaches electrical engineering students, as analog systems may be a difficult concept to understand.

Team Members

Project Manager Brandon Ussery Watson

Fabiana Jaimes

Daniel Sandoval

Team E2.02 - Electro-Sonic

PM Brandon Ussery Engineers: Fabiana Jaimes, Daniel Sandoval, Tim Watson

Sponsor: Texas State University

Design Approach

Tim Watson

Power

- Two packs of 5 AA batteries
- Dual rail (+7.5 V and -7.5 V)
- 1019 Limiter for positive rail
- Arduino battery life indicator

Subsystems

Keyboard

- Input: +5V from Power, Keyboard key pressed as User Input.
- Output: Control Voltage for LTE.
- Purpose: Uses a voltage divider to
- output a control voltage for the LTE converter as well as take in user input.

• Input: exponential voltage from LTE subsystem.

VCO

- Output: Sine, Triangle, Square voltage waves at frequencies ranging from 440 Hz to 880 Hz.
- Purpose: to generate the voltage waves at various frequencies that will create the tones for the notes in the octave.

- Input: linear control voltage from Keyboard controller.
- Outputs: exponential voltage curve for the VCO.
- Purpose: to create a 1 volt/octave scale and achieve system tuning.

Speaker

- Input: voltage wave from VCO. • Output: audible sound wave. • Purpose: utilizes a class D amplifier, logarithmic potentiometer, and two 8 ohm low sensitivity speakers to output the voltage
- waves audibly.

TEXAS STATE **UNIVERSITY**

The rising STAR of Texas

Results			
Requirement	Measured Data	Result	
Min 4hr Battery Life	6 hours 20 minutes worst case, 3 trials	Pass	
One octave keyboard following 1v/octave scale	Each key produced the correct associated frequency: when pressing A4 output is 440 Hz	Pass	
Monophonic Keyboard	If two keys are pressed a random frequency is produced	Fail	
Octave contains A=440Hz	Our First key is A4 which outputs 440Hz	Pass	
Generates square, triangle, sine waves	Measured all waves using an oscilloscope	Pass	
In tune within 12 cents (+/- 3 Hz)	The A note was measured at 442 Hz	Pass	
Internal speaker reaches > 80 dB	Square wave: 81 dB SPL at 1 meter Triangle wave: 80 dB SPL at 1 meter Sine wave: 75 dB SPL at 1 meter	Fail	
Acknowledgments			
Faculty Dr. Cecil Compeau Advisor			
Sponsor T (I	Texas State University Dr. Cecil Compeau)		
Instructor M	Iark Welker		