

E2.06 - Penbot

Thomas Denning (PM), Chris Le, Diego Garcia-Mendez

Mr. Lee Hinkle, Mr. Mark Welker

Penbot is an autonomous robot that produces line art.

Project Overview

- Small autonomous vehicle
- Driven by stepper motors
- Moves along a path to leave behind line art drawn by a center-mounted pen

Requirements

- Small size, low-cost, mix of 3D printed, cut sheet, and off-the shelf components
- Autonomous must complete drawings without interaction
- Five Drawings: simple/fast, portrait, geometric, landscape, supersize
- Team must include an interactive control mode

Drawings

Drawing (max draw time)

Simple
Abstract
(90 seconds)

Portrait (5 minutes)

Geometric (30 minutes)

Landscape (1 hour)

Supersize (2 hours)

Functional Block Diagram

Stepper Motor Control

Load Image into Buffer Array

Counter

Mobile App UI

(Checks

Remote Control

Android App Flowchart

Meet the Team

Diego Garcia-Mendez
Remote Control
Power Step

Thomas Denning
Image Processing
Stepper Motor Control

Chris Le Mobile App UI

Main menu features
 commands to draw
 preloaded images and
 the ability to enable
 two different
 controller options

 Drawing select menu shown on right

Rotate According to Angle in 2nd Column

Travel According to

Virtual Remote Controller

Test Cases

<u>Description</u>	<u>Criteria</u>	
Test for image processing recreation accuracy	Pass: The average SSIM (structural similarity index measure) for the 3 images tested was 0.91	
Test for stepper motor accuracy	Pass: The measured distance was within .5mm and the measured angle was within 0.985%	
Test for stepper motor speed	Pass: The top linear speed is 4.75cm/s ± 0.05 cm/s and rotates at 48.6°/sec	
Test for Bluetooth range	Pass: No noticeable delays between button presses	
Test for impact of Bluetooth devices in an area	Pass: A disconnection occurred once on the first floor of LBJ, but reconnection to the controller was immediately possible	
2 hour battery life	Pass: Ran continuously for 3.5 hours without a noticeable performance loss	

Power Dissipation

Source	Voltage (V)	Power (W)
18650 Lithium-Phosphate Battery (2)	7.4	16.28
Source	Voltage (V)	Power (W)
ESP 32	5	0.73
28byj-48 Stepper Motors	5	1.77
SG-90 Servo Motor	5	0.72
SD Card Module	5	0.2
Indicator LEDs	3.3	0.39
	Total	3.81

Acknowledgements

- Faculty Advisor: Mark Welker
- Sponsor: Lee Hinkle