

INGRAM SCHOOL OF ENGINEERING

Motivation

Currently the college rents a PA system for events such as Senior Design Day. Our project will replace the rented PA by designing a 6-channel audio mixer to connect to an existing speaker system.

Requirements

- 5 Mixer Inputs
- Mixer outputs to amplifier
- Budget \$75
- Be fully characterized
- Must be portable
- Operate from 35 20 kHz

Key Features

6 Audio Channels/ Inputs			
	Stereo	Mon	0
Bluetooth		XLR	
1/8″		1/4"	
MP3			
	RCA		
•	Internal Microphone		
	Preamp		
•	Stereo RCA Line out		
•	Channel Mute Switches		
•	Portability		

E2.04 – Audio Mixer & PA System **Project Overview**

An audio mixer which will adjust the channel volumes of all the featured inputs into one single audio output to the portable speaker and function as a complete Public Address System.

Block Diagram

Audio Mixer Charact			
Test	Procedure		
Signal to Noise Ratio	Measure and record individual channel's noise floo in dB, at summing circuit output. Provide line leve signal to channel's isolation input, and record noise, dB, at summing output		
Crosstalk	Provide line level signal to every channel excluding the victim channel; record the noise on victim channel, in dB, at output of the isolation circuit.		
Total Harmonic Distortion	Provide line level signal to channel being recorded using Keysight Oscilloscope measure and record TH		
Mute Switch Voltage	Provide line level signal to each individual tested channel and record its Vpp while the mute switch i disabled (signal pass) and enabled (no signal pass)		
Frequency Response	Use Keysight Oscilloscope frequency response function to generate simulated frequencies across each individual channel; record bode plot.		

Frequency(Hz)

I = 0.25 mAP = 3mW

+12.0VDC

Speaker

Acoustic Decibel Output

Isolation &

Summing Circuits

Power

Provided System

Amplifier Power

> 90 dBC at range ≤ 10ft

12VDC

96.7 dBC at 10ft

Acknowledgements

Instructor: Mr. Jeff Stevens Project Sponsor: Mr. Mark Welker Faculty Advisor: Dr. Rich Compeau D1 Mentee: 1.02 HoloLens