

Unit Cost to Date:

\$31.72/unit

Why is it Important?

- City planners will be able to identify "hot-spots" to determine methods of integrating heat-dispersing features for the development of heat-conscious cities.
- This grows increasingly relevant, as per the EPA¹, excessive heat is responsible for increased energy consumption and decreased public health.

Requirements

- Records temperature, humidity, time, position (GPS) locally with ease of access • for uploading to cloud storage.
- 40 x 40 x 100 mm max size, 150g max weight. •
- 4 hour / 48 hour battery life (operating / idle). •
- Rich information display via webapp overlaid on a map

Cost and Budget

Original Unit Cost Requirement: \$30.00/unit

Next Steps

- Reduce unit cost
- Determine best sampling rates for GPS
- Implement the Interactive map
- Determine and test battery level indications
- Perform and document tests of individual subsystems
- Integrate all subsystems into final design
- Collect data sets for data validation
- Ensure device can handle physical tests of rain simulation and dropping Test low power mode duration and limitations
- Build multiple prototypes for Spring 2023 Senior Design Day

Meet the Team

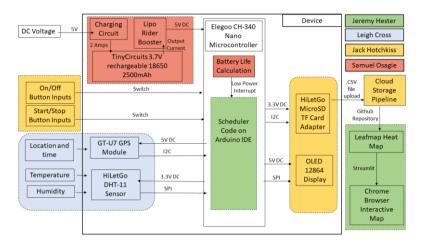
Leigh Cross, Sensors (Temperature, Humidity, GPS) Jack Hotchkiss, User Interface and Data Management

Project Manager: Jeremy Hester, Scheduler and Interactive Heat Map Team Members:

Samuel Osagie-Aruya, Power Storage and Distribution

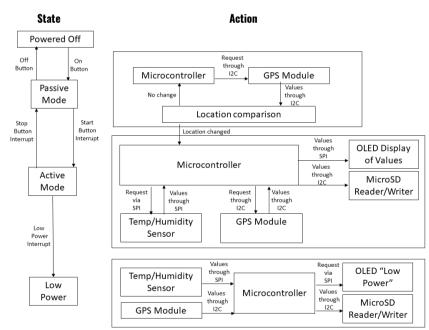
Acknowledgements

Sponsor: Lee Hinkle

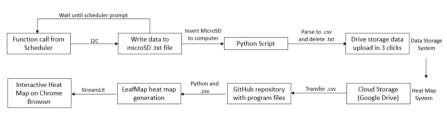

Faculty Advisor: Lee Hinkle

D2 Mentors: Kayla Adderley, Ryan Fassnidge, AJ Holley, Skylar Roath

Project H.I.K.E. – Heat Island Kartographic Environment 1.09 – Heat Island Map 2


Our project is a portable data logger that tracks temperature, humidity, location, and time. The data is stored locally, then transferred to a cloud-based storage system and displayed on an interactive heat map.

Functional Block Diagram



Scheduler Flow Chart

The scheduler is a state machine that regulates the timing of individual subsystems.

Data Storage to Interactive Map Flow Chart

User Interface

Data Storage and Management

Sensors

DHT11 – Temperature / Humidity Sensor		GT-U7 – GPS Module	
Communication Protocol	One-wire / Digital Pin	Communication Protocol	One-wire / SPI
Supply Voltage	3 to 5.5V DC	Time to First Fix (Cold Start)	26 – 32 sec.
Temperature Range	0 to 50°C (-32°F to 122°F)	Time to First Fix (Hot	
Accuracy	+/- 2ºC (at 0 to 50ºC)	Start)	≈ 1 sec.
	[+/- 3.6ºF (at -32º to 122ºF)]	Velocity Accuracy	+/- 0.1 m/s
Response Time	Range ≈ 6 - 15 sec.	Heading Accuracy	+/- 0.50

Power Budget

Power Allocation					
Components	Current (mAh)	Voltage(V)	Power(mWh)		
18650 Lithium-Ion Rechargeable Battery	2500	3.7	9250		
Components	Current (mA)	Voltage(V)	Power(mW)		
Arduino (Nano)	19	5	95		
SD Card module	200	3.3	660		
OLED Display	24	5	120		
Temp Humidity Module	2.5	3.3	8.25		
GPS Module	45	5	225		
Total	290.5 mA	N/A	1108.25 mW		
Battery Life Expected	High Sampling Rate	Average Sampling Rate	Low Sampling Rate		
Active Use	6.4 hours	11.1 hours	17.6 hours		
Passively On	28.8 hours	60.9 hours	84 hours		

¹ EPA. [Online]. Available: https://www.epa.gov/heatislands/learn-about-heat-islands#impacts. [Accessed: 28-Sep-2022].