

M2.01 – NXP "El Mandadero"

Christopher Cameron, Caitlyn Landers, Kaitlyn Ramirez, Taylor Sekula, Justin Vaughn Sponsor: Iain Galloway – NXP Semiconductors Instructor: Mark Summers

Initial Problem

Manufactur

Cut pan

Bend up

Tig weld

Cut axle

3D print

Gasket

7. Pour Po

1.

2.

3.

4.

5.

6.

"El Mandadero" was designed by a previous senior design team with the assistance of NXP. Our goal was to improve upon this design by creating a more efficient suspension system and increased stability confirmed with test data.

Manufacturing Changes

Past Design

- Aluminum
- Bolt fasten (for torsion Box)
- 40 polyurethane shore hardness
- No metal texture finishes

New Design

TIG welds (for torsion Box)

Stainless steel

- DOE testing to determine polyurethane spring constant
- DOE testing to determine metal finish

Manufacturi	ng Process		
ing Process: els from sheet metal per torsion bracket I torsion box together s the jig for pouring process and hot glue to seal the jig lyurethane	inted Jigs	B-inch steel tube	Torsion Box
		\rightarrow	

Compressive Test

A compressive force was applied to the base of the axle until failure occurred between it and polyurethane spring. The goal of this test was to identify the most effective finish applied to the square tubing and whether the performance difference was substantial enough to add to the manufacturing process.

Torsional Test

The 3 different shore hardness of 60A, 70A, and 80A would undergo a torsional force that would incrementally increase by 10 ft/lbs. the resulting angle was recorded after each cycle. The goal for this test was to calculate the spring constant for each and determine the most efficient in terms of stiffness, fatigue, and deformation.

Compression Testing Analysis

Test	Square Tubing Fin	ish Shore Ha	rdness Total C	ompressive Load	Rea	ached Failure
1	Clean	60/	A	519.73 lb		No
2	Sand Blasted	60/	A	519.78 lb		No
3	Grinded	60/	A	519.57 lb		No
Test	Square Tubing Finish	Shore Hardness	Total Displacemen	t Total Compressive	e Load	Reached Failure

Test		Square Tubing Finish	Shore Hardness	Total Displacement	Total Compressive Load	Reached Fail
	1	Clean	60A	0.732 in	1194.624 lbs.	Yes
	2	Sand Blasted	60A •	0.709 in	1157.088 lbs	Yes
	3	Grinded	60A	0.564 in	920.488lbs	Yes

Torsion Testing Analysis

