TEXAS

INGRAM SCHOOL OF ENGINEERING

E2.03 - Team Waveguide

Anurag Kumar (PM) | Matthew Bistricer | Josue Garcia | Cole Knapek Vahid Jalaliani | Brodrick Mills | Sarah Picas | Dylan Woody

Dr. Richard Compeau

Process Flow Diagram

Requirements

- Insertion Losses are losses in transmitted signal through the waveguide.
- VSWR measures how efficiently power is transmitted through the waveguide.
- Budget was to remain within 20% of the commercial component.

Data Type	Waveguide Bulkhead Adapter	Waveguide Straight Section	Coax-to-Waveguide Adapter	
Insertion Loss Req.	Insertion Loss Req. 0.5 dB/m		1 dB	
Insertion Loss Measured [Commercial] Max/Average (dB)	1.33 / 0.43	1.33 / 0.43	n/a	
Insertion Loss Measured [3D Printed] Max/Average (dB)	2.02 / 1.20	0.76 / 0.18	2.66 / 0.49	
VSWR Req.	<1.5	<1.5	<1.5	
VSWR Measured [Commercial] Max/Average	1.26 / 1.13	1.26 / 1.15	1.33 / 1.19	
VSWR Measured [3D Printed] Max/Average	1.16 / 1.11	1.16 / 1.11	1.54 / 1.23	
20% of Commercial Cost	\$73.00	\$40.00	\$72.00	
Estimated Project Component Cost	\$17.50	\$15.00	\$18.50	

and utilized to calculate the VSWR (equation on the left). The data was comparable to the 3D printed component as it performed within 1.5 of the commercial component.

TEXAS

INGRAM SCHOOL OF ENGINEERING

Low-gain Horn Requirements

- The requirements of the low-gain horn
- Major lobes and peak points are the same between HFSS Simulation, Commercial, and 3D Printed Horns
- Peak gain is sufficiently similar between the Commercial, and 3D Printed Horns

Testing the low-gain horn

The 3D printed and commercial low-gain horns were sent to a professional antenna test lab to characterize their performance. The collected performance characteristics were

- Antenna gain pattern
- Peak/Z-axis gain
- Antenna Radiation Efficiency

Commercial Horn in Test Chamber

3D Printed Horn in Test Chamber

Link to the antenna test lab: <u>antennatestlab.com</u>

High-gain horn

The high-gain horn was intended to be testing using the "Image method under a mismatched condition" described in [1]. However, we did not have the capability to do that testing, and thus don't have the data for it.

[1] R. Lee and M. Baddour, "Absolute gain measurement by the image method under mismatched condition," 1987 Antennas and Propagation Society International Symposium, 1987, pp. 398-401, doi: 10.1109/APS.1987.1150112.

E2.03 - Team Waveguide

Anurag Kumar (PM) | Matthew Bistricer | Josue Garcia | Cole Knapek Vahid Jalaliani | Brodrick Mills | Sarah Picas | Dylan Woody Dr. Richard Compeau

Low-Gain Horn Results

HFSS Simulation of Low Gain Horn Radiation Pattern

3D Printed Horn Radiation Pattern - 11 GHz

The Z-axis Peak Gains for Both Horns Show Similar Values Across the Horns' Operating Range

The Maximum Difference Between 3D and Commercial Z-axis Magnitude was Below a Half Percent **Throughout the Operating Region**

Cond	uctive	Coating	Methods

PETG	
Waveguide	
Component	

Prep:
Sanding
/ Cleaning

		ł
π	- 1	i
P		1
Soo	1	
pee	- 1	i
	- i	

Apply ed Laye

- Electroplate

Process

Due to difficulties getting 100% coverage with electroplating, alternatives were researched.

- A combination of electroplating and/or silver coated copper spray was used to apply the conductive layer.
- At least 4 layers of copper spray was applied to all components.

The final process developed for electroplating yielded a thickness of about 45µm and resistivity nearly identical to pure copper in a plating time of 30 minutes.

- $\frac{1}{2}$ Gallon of water
- 100g Copper Sulfate
- 3V DC 0.35A *Amperage varies by substrate
- PH 4.2
- ½ Teaspoon of Miralax.

Conductive Coating Process

Shaped Copper Anode

Electroplated Low-gain Horn

Electroplating Bath

Silver Coated Copper Spray

Matthew

Josue

High-Gain Horn Conductive Coating Low-Gain Horn Conductive Coating

Cole

Brodrick

Conductive Coating Thickness Requirements

Skin Depth $(\delta_s) = \sqrt{\frac{\rho}{\pi f_o \mu_r \mu_o}}$ $f_o = AC$ frequency, $\rho = resistivity$ *Bulk resistivity = thickness*sheet resistance*

Material	Bulk Resistivity (μΩ cm)	Skin Depth @ 8.2 GHz	δs = 5 (μm)	δs = 10 (μm)
opper (ideal)	1.678	0.720	3.60	7.20
Iver-coated opper Paint (ideal)	220	8.20	41.0	82.0
Copper measured)	0.174	.735	3.675	7.35
Iver-coated opper Paint measured)	314	9.85	49.25	98.5

Minimum of 5 skin depths needed for performance req. Targeting at least 10 skin depths of thickness Measured values were taken as average of multiple samples' data

Sheet Resistance Data

3 – Layers Copper Spray – ~120µm

6 – Layers Copper Spray – ~190µm