

M2.02: Sustainable Heritage in Landa Park Miniature Golf

John De Witt, Emily Owens, Jonathan Martinez, Adaugo Anyalebechi Ylda Capricciso

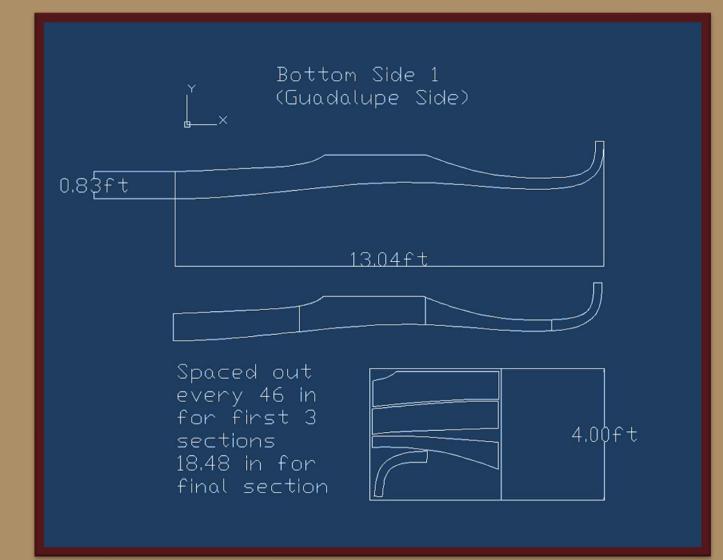
Objective

- Design a new hole feature for Landa Park Minigolf Course
- * Needs to have minimal to no maintenance and be long lasting.
- Must clearly reflect New Braunfels Heritage & Culture

History

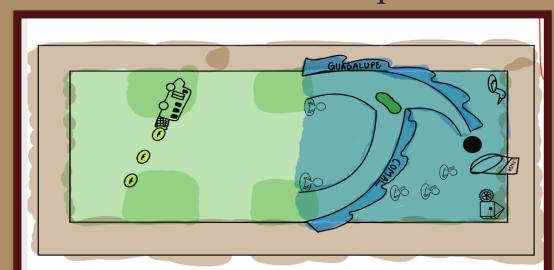
- Used several sources of research such as: New Braunfels' Historic Landa Park 'It's Springs and its People' By Gregory Seals
- * Water powered gristmill built in 1878 for commerce
- **Early** settlers found the land desirable due to the confluence of the Comal and Guadalupe
- Tubing first became popular as early 1968 and quickly became a thriving industry for New Braunfels

Hole Selection


- Selected Hole 14
- ❖ Dimensions: 33.5' x 4.5'
- * Hole 14 currently
- * Advantageous to creating a feature.

Manufacturing

- Converted 3D SolidWorks Design into a 2D flattened .dxf file.
- Optimized location of each 2D section using *AutoCAD*.
- **\Delta** Utilizing the *Torchmate 4400*, each part was cut precisely within the designated 4'x4' envelope.
- ❖ Bonded structure together using a *Miller 220 MIG* welder.


Part Optimization

The Comal and Guadalupe Rivers Design Concept

Concept Generation

Conceptualization

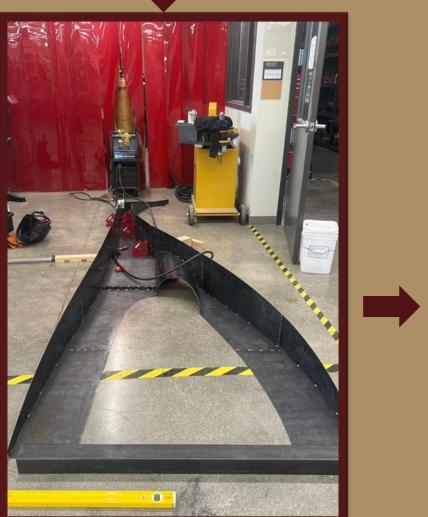
Themed after the confluence of the Comal and Guadalupe Rivers featuring themed obstacles and a ramp

Fabrication

Process

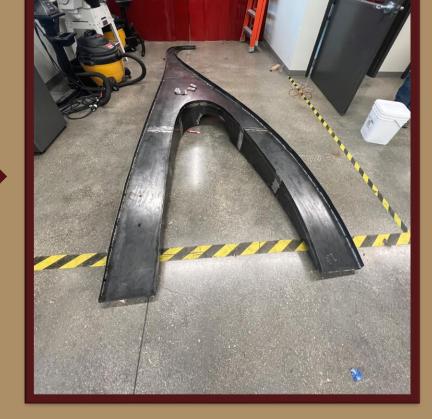
Modeling

- Designed main feature through Solidworks
- Themed obstacles designed with AutoCAD


Rapid Prototyping

Created various 3D models for testing to make necessary adjustments to the design

Final Product



Rolled 6" Radial Tunnel

Support System

Completed Welded Structure

Tabs for Installation

Materials

Ramp:

Base of Structure – 1/8" A36 *Side Panels* – 1/16" A36 Top of Structure – 1/8" A36

Thru Hole – 6" radius, rolled 1/16" A36 sheet Internals of Structure

– 1/4" and 1/8" A36 skeletonized support system Polyurethane Spray Foam for noise deadening properties

Obstacles:

All Designs – 1/4" A36 sheet metal **Hardware for Installation:** 3/8"x3" Sleeve Anchors

Themed Obstacle Designs

River Float

Tubing Bus

Tubing Models

The Mill

Powder Coat Colors

Challenges with Build

Obstacles

- Obstacle layers were originally welded together first, causing masking and paint errors
- Extra processing time due to downed machines
- Some original designs were not within child safety regulations.
- Difficulty learning the powder coating process

Ramp

- Deciding between filling internal structure with cement vs. metal skeletonized structure.
- Decreasing size of thru hole for child protection.
- ***** Extreme warping of material caused structure to sit unevenly on the ground.
- Difficulty learning the welding process

