

Reauirements

- Records temperature, humidity, time, position (GPS) locally with ease of access for uploading to cloud storage.
- 40 x 40 x 100 mm max size, 150g max weight.
- 4 hour / 48 hour battery life (operating / idle).
- Rich information display via webapp overlaid on a map

Why is it Important?

- City planners will be able to identify "hot-spots" to determine methods of integrating heat-dispersing features.
- This grows increasingly relevant, as per the EPA¹, excessive heat is responsible for increased energy consumption and decreased public health.

Cost and Budget

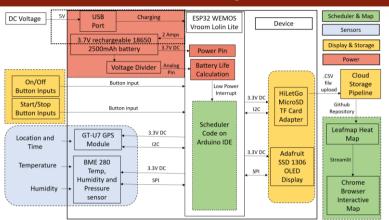
Original Unit Cost Requirement: \$30.00/unit

Meet the Team

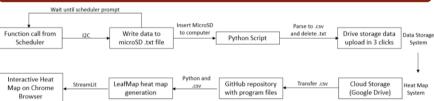
Unit Cost to Date:

\$28.22/unit

Samuel Osagie- Aruya Power Storage & Distribution	Leigh Cross Sensors (Temperature, Humidity, GPS)	Jeremy Hester Project Manager (Scheduler & Interactive Heat Map)	Jack Hotchkiss User Interface & Data Management

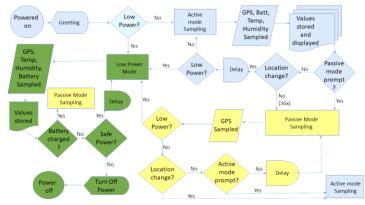

Sponsor and Faculty Advisor: Dr. Lee Hinkle

Sensors				
Requirements	Location	Expected Result	Actual Result (Distance from Control)	
Coordinate Accuracy	Clear Sky	Within 1 meter	0.54m	
	Under Tree Cover	Within 1 meter	0.62m	
	Within 5m of Residential Building	Within 1 meter	0.63m	
	Within 5m of Commercial Building	Within 1 meter	0.90m	
Requirements	Expected Result	Actual Result	Percent Error	
Temperature within Texas Historical Range	40.4°F	42.2°F	4.5%	
[-23ºF to 120ºF]	79.6°F	82.1ºF	3.1%	
	101.3ºF	98.7ºF	2.6%	
Relative Humidity within Texas Historical Range	40%	42.3%	5.8%	
[25% to 95%]	80%	75.2%	6.0%	


2.09 Project H.I.K.E. Heat Island Kartographic Environment

Our project is a portable data logger that tracks temperature, humidity, location, and time. The data is stored locally, then transferred to a cloud-based storage system and displayed on an interactive heat map for use by city planners.

Hardware Block Diagram


Data Storage to Interactive Map Flow Chart

Scheduler Flow Chart

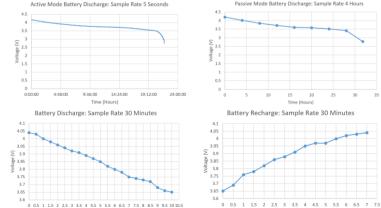
The scheduler is a state machine that regulates the timing of individual subsystems.

User Interface

Drop Testing and Water Resistance

- Able to withstand drop of 3' onto a hard . smooth concrete surface without loss of functionality.
- Rain and water resistant able to withstand 3 full showerings without visible entry of liquid or loss of function.

Device Operational Heat Curve



To address heat build-up within the device chassis due to the operational heat of the inner components, an operation heat curve was established and applied to the device's code to allow for higher accuracy readings.

Power Budget

- The actual battery life lasted for 24 hours and 7 minutes on active mode, in contrast with • the expected battery life of 7.7 hours on active mode.
- The actual battery life lasted for 32.8 hours on passive mode in contrast with the expected battery life of 55.5 hours on passive mode.
- Recharge circuit tests yielded a 7 hour recharge time after initially discharging the battery for 10 hours.

Device Operating Mode	Expected Current Draw	Actual Current Draw
Active Mode	325.7 mA	75.9 mA
Passive Mode	45.01 mA	62.4 mA

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5

¹ EPA. [Online]. Available: https://www.epa.gov/heatislands/learn-about-heat-islands#impacts. [Accessed: 28-Sep-2022].