STATE TEXAS **INGRAM SCHOOL OF** ENGINEERING

PROJECT SCOPE

- Design a sustainable and cost-efficient Affordable Housing Complex for 100 families in the Central Texas Region
- Ensure sustainability of the proposed design utilizing the Leadership in Energy and Environment Design (LEED) Rating System
- Develop a Construction, Material, and anticipated Life-Cycle Cost Analysis to determine a final Net Present Value in current dollars.
- Configure both a system and component design for our housing complex

DESIGN CONSIDERATIONS

- Sustainability
- Environmental Impacts
- Code Considerations
- Land Usage
- Cost (Construction and Lifetime)
- Time Frame of Construction

SUSTAINABILITY EVALUATION

LEED Rating Results

LEED Assessment	Score	Rating
1	47	Certified
2	62	Gold

TEAM PHOTO

Team Members from left to right: Carlos Sanchez, Cortland Hughes, Trevor Meyer, Aaron Gonzales

$\mathbf{C2.02}$ SAN MARCOS AFFORDABLE HOUSING PROJECT

Contributors: Aaron Gonzalez, Carlos Sanchez, Cortland Hughes, Trevor Meyer

SYSTEM DESIGN

- The layout of our complex including building placement, parking spots, sidewalks, landscape, fire lanes, ADA requirements and more.
- Local, State and Federal Building Codes were considered

Parking Lot	Regu
502.2) Vehicle Spaces: Car parking spaces shall be	502
at least 8 feet wide and van parking spaces must	
be 11 feet wide, with an exception where van	
parking spaces can be 4 feet wide if the access	
aisles are 4 feet wide as well.	
502.3.2) Access aisles need to be extended to the	502.3
full length of the parking space they serve.	

Proposed Site Design Calculations for Required Parking & Impervious Cover

Required Parking	1.05 spots/unit	113 required (108 units)	243 provided
Impervious Cover	Total Site Area	Impervious Area	39%
	716,040 ft ²	297,402 ft ²	Impervious cover

COMPONENT DESIGN

- Geotechnical Foundation included analysis of soil properties, determining mitigation mechanisms for settlement, potential vertical rise (PVR), and develop a shallow foundation for each building.
- In order to remediate the in-situ soil which contained mostly fat and lean clays, the team opted to utilize a Lime-based chemical treatment.

Figure 1: Foundation 2 Dimension

lations

2.3.1) Access aisles serving parking spaces need to be at minimum 5 feet wide.

3.3) Access aisles need to be clearly marked so prevent parking in that space.

Figure 2: Foundation 2 Dimensions

CONSTRUCTION SCHEDULE

- foundation is shown in Figure 3
- foundation

PHASE		DETAILS
	PROJECT WEEK:	
	Grading	- Landscape clearing
1		- Digging
		- Filling Low Spots
		- Leveling Slopes
		- Soil Pulverizatoin
2	Conventional Lime Treatment	- Preliminary Mixing (Incl
		- Final Mixing and Compa Curing Time)
3		- Layout Footings
	Foundation	- Install Reinforcement
		- Concrete Pouring
		- Waterproofing

Figure 3: Foundation Construction Timeframe

CAPITAL AND LIFE CYCLE COSTS

REFERENCES/ACKNOWLEDGMENTS

- 273.html
- Services, Project No. 2020-907
- Engineering

A proposed timeline of our construction schedule of the geotechnical

• An estimated 4 months for the foundation construction including grading, conventional lime treatment and the pouring of the

<u>sts</u>	\$38,500,000.00
<u>s</u>	\$95,100,000.00
	\$49,300,000.00
)	\$59,200,000.00

1) https://www.rent.com/research/average-rent-price-report/ 2) https://www.census.gov/library/publications/2021/demo/p60-

3) RSMeans https://www.rsmeansonline.com/

4) Arias Geoprofessionals, December 2020, Geotechnical Engineering

5) Dr. Stacey Kulesza – CE Associate Professor – Ingram School of