

INGRAM SCHOOL OF ENGINEERING

Cost Estimate

Table 2: Commuter Rail Line-Item Estimation						Const Cost	Maint.	Renap.
Items Required	Estimate	Units	Unit Cost	Total Cost	Years	(Thsd. \$)	Cost	Cost (Thed S)
PREPARING ROW	3273.6	STA	\$5,932.44	\$19,420,435.58			(דוואמי און	(Thsu \$)
Traffic Control System	62	miles	\$357,500.00	\$22,165,000.00	0	\$1,638,355		
Railway Turnout	0	each	\$605,000.00	\$-	5		\$41,070	
Passenger Siding	0	each	\$1,650,000.00	\$-			. ,	
Signals	172	each	\$2,950.00	\$507,400.00	10		Ş41,070	
Crossing barrier / gate	344	each	\$11,000.00	\$3,784,000.00	15			\$66,830
Railroad ties	392832	each	\$133.44	\$209,678,008.32	20		\$11.070	
Tie Plates	785664	each	\$10.75	\$33,783,552.00	20		\$41,070	
Track Bolts	0	each	\$3.55	\$-	25		\$41,070	
Rail Spikes	1571328	each	\$1.05	\$6,568,151.04	20			666 020
Rail Stop	8	each	\$950.00	\$7,600.00	30			\$66,830
Rail	1309440	feet	\$33.15	\$43,407,936.00	35		\$41,070	
Construction Labor	124	miles	\$2,000,000.00	\$248,000,000.00	10		<u><u> </u></u>	
Ground Level Station	7	each	\$24,000,000.00	\$168,000,000.00	40		\$41,070	
Lime Treatment	19641600	ft²	\$0.33	\$6,481,728.00	45			\$66,830
Ballast Gravel	716010.5216	yard ³	\$50.00	\$35,800,526.08	50		\$41,070	
Subballast Gravel	358005.2608	yard ³	\$50.00	\$17,900,263.04	55		\$41,070	
Operation and Management	62	miles	N/A	\$353,000,000.00	60			\$66,830
Detailed Design	5.25%	%		\$68,865,541.50	65		\$41,070	
Construction	2 5 00/	2 5 00/ 0/		¢лг 010 201 00	70		\$41,070	
Inspection	3.50%	%		Ş45,910,361.00	75		\$40,070	
Owner Engineering / Oversight	1.25%	%		\$16,396,557.50	Salvage	\$10,000		
Total				\$1,638,355,060.07	Total Cost	\$2,356,445,060	Actual Dollars	

The overall cost is estimated at 2.5 Billion USD.

Sustainability Analysis

Class	Rall Score	Iviax Score
Quality of Life	157	200
Leadership	146	182
Resource Allocation	125	196
Natural World	108	232
Climate and Resilience	157	190
	693	1000

*Analysis done using ISI Envision A score of 69.3% is Platinum Ranked

C2.08 - I-35 Commuter Rail

Bryan Brinkman, Skyler Garrett, Andrew Gombac, Mason Holden

Track Alignment 50 M8 Electric Passenger Train - 30 • 110 passengers per car • 80 miles per hour traveling speed 20 • Electric > Diesel ~145,000 lbs train weight 1200

Two major radii taken into consideration. As the radius increases, cant size increases.

Ridership and Train Schedule

From \ To	Austin	Buda	Kyle	San Marcos	New Braunfels	San Antonio
Austin	11,625	133	310	170	95	871
Buda	53	15	24	10	3	11
Kyle	35	7	42	17	5	13
San Marcos	78	9	55	225	66	93
New Braunfels	34	3	12	45	424	169
San Antonio	597	10	37	57	354	17,507

Commuter data was taken from US Census and multiplied by a factor equal to the average number of trips made by public transit in the United States

Drainage and Foundation

	MATERIAL	DESCRIPTION	THICKNES
Rail	Standard Steel	Steel rail to guide/support the train as it travels.	-5 ''
Sleeper	Wood	Support the track, maintain position, and transfer load downwards.	5 – 6 ''
Ballast	Crushed Gravel	Transmit and distribute an induced cyclic load downwards.	1
Geogrid	Plastic Polymers	Reinforce soils/layers and prevent fines from fouling the Ballast.	
Sub-ballast	Well-graded crushed rock	Filter/Separation layer to transmit loads downward.	0.5
Subgrade	Existing Soil	Stiff layer capable to sustain induced stresses.	10

Meet the Team Members

From left to right: Mason Holden, Andy Gombac, Skyler Garrett, Bryan Brinkman

Typical Profile

Pictured above shows the two proposed railroads with corresponding spacing, layer thickness', drainage ditches, and slope gradients.

Acknowledgements

We would like to thank the College of Science and Engineering for giving us the opportunity to create this project, Dr. Feng Hong and Dr. Gutierrez for guiding us through our design process, and our friends and family for encouraging and inspiring us to continue in our pursuit of higher education.

Without them, we would have been unable to accomplish all that we have in our time at Texas State University

Thank you.