New Initiatives Target Local Scale Issues

By Eric Mendelman, Texas Watch

During the past year, Texas Watch launched a number of new initiatives that focus on local water quality issues. In this article, we update our readers on these new projects and explore some of the broader factors that help us understand the nature of these water quality issues and give us a clear focus and energizing sense of purpose in pursuing beneficial water quality in Texas.

Since Texas Watch’s founding in 1991 at the Texas Water Commission, the program has grown and evolved in response to the needs of our partners and volunteers, as well as the requirements of our funding sources. In recent years, however, water quality trends in Texas and the response of the Texas Commission on Environmental Quality (TCEQ) have emerged as one of the most compelling forces in directing Texas Watch’s efforts.

There are few Texans today who have the luxury of ignoring the rapid population growth and the resulting increase in traffic and urban sprawl. In 2000, the Texas State Library reported that “between 1990 and 1999, Texas was the second fastest-growing state in the nation, with a 14 percent total population increase. The state’s population is expected to continue this rapid growth over the next five years, with a total projected population of 22.3 million by the year 2005.”

And indeed, these projections appear to have hit the mark. U.S. Census data

Volunteer Spotlight: Caring for the Brazos

By Nyta Brown, Texas Watch

In an effort to express our thanks and to highlight the work of some of our volunteer monitors, we are featuring a volunteer in each edition of our Texas Watch newsletter. This month we want to tell you about Michael and Connie Bales.

Michael and Connie Bales became aware of the Texas Watch Program through their membership in the Texas Master Naturalist Program. They currently monitor four sites, three of which are on the Brazos River. Connie monitors at a site in Weatherford’s Holland Lake Park and one on the Brazos River. Michael monitors a site north of the Brazos River Bridge in a community called River Mountain and another close to Milsap, Texas, near Possum Kingdom Dam.

While Michael is new to the program, Connie has been monitoring for well over a year.

Michael was compelled to begin monitoring on the Brazos after the Brazos River Conservation Coalition asked for help collecting data on the Brazos waters. The Coalition was con-
summarized by the Real Estate Center at Texas A&M University plainly show how this growth trend has unfolded in our major urban areas (Table 1).

Along with this significant population surge, we also witnessed the emergence in the 1990s of a very aggressive TCEQ program to address water resource impacts from anthropogenic (man-made) sources. Since 1996, TCEQ’s program to produce the Texas Water Quality Inventory and 303(d) List has increased sampling of river miles by 41%. According to the TCEQ, this has led to a concurrent rise in the number of water bodies identified as impaired, from 147 in 1996, to 306 water bodies in 2004, with a total of 419 impairments. The TCEQ’s Total Maximum Daily Load Program, which establishes both limits for the pollutants identified on the 303(d) list and strategies for achieving pollutant targets, increased the total number of impairments addressed by TMDL projects from 67 in 2000 to 199 in 2004. As of May 2005, TCEQ has addressed these impairments on 111 water bodies with adoption of final TMDLs for 57 impairments in 33 water bodies as of April 2004.

The motivation for establishing TMDLs and implementing plans to achieve them has been very strong in Texas throughout the program’s history. This is

Table 1. Texas Metropolitan Area Population Change

<table>
<thead>
<tr>
<th>Metropolitan Area</th>
<th>1990 Population</th>
<th>2004 Population</th>
<th>Change (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>McAllen–Edinburg–Mission</td>
<td>383,545</td>
<td>658,248</td>
<td>71.6</td>
</tr>
<tr>
<td>Austin–San Marcos</td>
<td>846,227</td>
<td>1,412,271</td>
<td>66.9</td>
</tr>
<tr>
<td>Laredo</td>
<td>133,239</td>
<td>219,464</td>
<td>64.7</td>
</tr>
<tr>
<td>Dallas</td>
<td>2,676,248</td>
<td>3,886,553</td>
<td>45.2</td>
</tr>
<tr>
<td>Brownsville–Harlingen–San Benito</td>
<td>260,120</td>
<td>371,825</td>
<td>42.9</td>
</tr>
<tr>
<td>Brazoria County</td>
<td>191,707</td>
<td>271,130</td>
<td>41.4</td>
</tr>
<tr>
<td>Houston</td>
<td>3,391,911</td>
<td>4,587,092</td>
<td>38.1</td>
</tr>
<tr>
<td>Fort Worth–Arlington</td>
<td>1,361,034</td>
<td>1,878,334</td>
<td>38.0</td>
</tr>
<tr>
<td>Texas</td>
<td>16,986,335</td>
<td>22,490,022</td>
<td>32.4</td>
</tr>
<tr>
<td>San Antonio</td>
<td>1,394,749</td>
<td>1,792,117</td>
<td>30.0</td>
</tr>
<tr>
<td>Bryan–College Station</td>
<td>121,862</td>
<td>156,275</td>
<td>28.2</td>
</tr>
<tr>
<td>Killeen–Temple</td>
<td>255,999</td>
<td>395,398</td>
<td>57.7</td>
</tr>
<tr>
<td>Galveston–Texas City</td>
<td>217,396</td>
<td>271,743</td>
<td>25.0</td>
</tr>
<tr>
<td>Tyler</td>
<td>151,309</td>
<td>186,414</td>
<td>23.2</td>
</tr>
<tr>
<td>Sherman–Denison</td>
<td>95,019</td>
<td>115,933</td>
<td>22.0</td>
</tr>
<tr>
<td>Amarillo</td>
<td>187,514</td>
<td>227,472</td>
<td>21.3</td>
</tr>
<tr>
<td>El Paso</td>
<td>591,610</td>
<td>713,126</td>
<td>20.5</td>
</tr>
<tr>
<td>Waco</td>
<td>189,123</td>
<td>222,439</td>
<td>17.6</td>
</tr>
<tr>
<td>Victoria</td>
<td>74,361</td>
<td>85,777</td>
<td>15.4</td>
</tr>
<tr>
<td>Lubbock</td>
<td>229,632</td>
<td>251,018</td>
<td>12.7</td>
</tr>
<tr>
<td>Longview–Marshall</td>
<td>193,801</td>
<td>215,159</td>
<td>11.0</td>
</tr>
<tr>
<td>Texarkana</td>
<td>120,132</td>
<td>132,716</td>
<td>10.5</td>
</tr>
<tr>
<td>Corpus Christi</td>
<td>349,894</td>
<td>385,700</td>
<td>10.2</td>
</tr>
<tr>
<td>Odessa–Midland</td>
<td>225,545</td>
<td>244,832</td>
<td>8.6</td>
</tr>
<tr>
<td>Beaumont–Port Arthur</td>
<td>361,818</td>
<td>383,443</td>
<td>6.2</td>
</tr>
<tr>
<td>San Angelo</td>
<td>98,458</td>
<td>103,772</td>
<td>5.4</td>
</tr>
<tr>
<td>Wichita Falls</td>
<td>130,351</td>
<td>136,595</td>
<td>4.8</td>
</tr>
<tr>
<td>Abilene</td>
<td>119,655</td>
<td>125,108</td>
<td>4.6</td>
</tr>
</tbody>
</table>

Source: U.S. Census Bureau; Texas A&M University, http://recenter.tamu.edu/mreports/Laredo12.asp
due in large part to new requirements for facilities discharging wastewater into a listed water body. And even more significantly, the TCEQ may not allow any new or expanded discharges of a listed pollutant if it contributes to the impairment.

As a result, the TMDL program has emerged as one of the leading water quality management priorities in the state, with TMDL project areas often carrying significant weight when the time comes to allocate state water resource management funds.

Texas Watch Initiatives in the TMDLs

The long arm of the TMDL program is reaching into urban and rural areas across Texas, and plans have been made for three TMDL projects to incorporate Texas Watch activities in 2006 that support and enhance implementation strategies. These TMDL projects include the Orange County, Petronila Creek (jointly with the Oso Bay/Oso Creek), and Arroyo Colorado projects.

In each of these projects, the TCEQ has identified a need to increase public awareness about the TMDL and to inform people about sources of impairments and what can be done to reduce pollutant loadings. In coordination with the TMDL program, Texas Watch plans to target schools and the general public for participation in water quality monitoring training and implementation of Texas Watch curriculum in schools. This approach will be tailored to meet the specific needs of each TMDL. For example, the Orange County TMDL will emphasize teacher workshops, the Arroyo Colorado Project will expand volunteer monitoring, and the Petronila Creek and Oso Bay/Oso Creek TMDL projects will address litter in addition to strengthening support for volunteer monitoring in Oso Creek.

The “Dos Laredos” Project

With all the emphasis placed on TMDLs, other factors are delineating priority project areas for Texas Watch. Population trends (Figure 1) and rapid economic growth on the Texas–Mexico border in recent decades have called upon leading environmental programs, such as the United States Environmental Protection Agency’s Border 2012 Program, to allocate funding here for waste reduction and public outreach programs. This year, Texas Watch received funding directly from EPA to coordinate expansion of Texas Watch activities in Laredo and Nuevo Laredo. This exciting new grant will fund staff time at Texas Watch and a coordinator in the City of Laredo to organize volunteer monitoring, watershed surveys, litter pickup, and public education forums.

The “Learning Urban Watersheds” Project

A second EPA grant award, which Texas Watch received in September, funds support for underperforming and underserved schools in Austin, Dallas/Fort Worth, and

(continued on page 4)
New Initiatives
(continued from page 3)

Houston. This project, which is supported through a collaboration with Texas Parks and Wildlife, the Lower Colorado River Authority River Watch Network, and the City of Austin’s Sheffield Education Center, kicked off this fall with an event called “Splash Into Learning” (see article on page 6). “Splash” was the first of several activities with middle school and high school students that will include teacher workshops, field sampling, and an Earth Day event in which high school students will mentor younger students.

Over the last decade, the TCEQ and EPA have demonstrated their willingness to invest significant resources in projects designed to produce beneficial water quality results. The intensification of Texas Watch efforts at the local level is yet another indication that they are extremely serious about the long-term impact of population and economic growth on water quality.

Texas Watch will be moving forward this year with a strong sense of optimism in light of the fact that, according to the TCEQ, “overall water quality remains good, with most water bodies meeting their standards.” At the same time, we recognize that many areas of the state that enjoy predominantly pristine water quality conditions nevertheless face pressures similar to impaired areas and need support to maintain water quality.

In order to maintain support for folks in areas outside the project areas mentioned here, Texas Watch remains committed to providing a supportive network, training resources, information through our website and newsletter, regional meetings, and data reports. In addition, Texas Watch will continue supporting the Clean Rivers Program Partners and Steering Committee process. This effort will include facilitating volunteer participation in the CRP Steering Committee meetings, including assisting volunteers with data summaries, preparing presenations for the Steering Committees, representing volunteer concerns at the meetings, and communicating with CRP Partners to resolve issues of concern should they be raised by volunteers.

As always, the program remains open to your suggestions for how the program can better serve you. The new emphasis on localized projects offers new challenges and new opportunities for positive change. We look forward to helping you make a difference in your special corner of Texas.

Volunteer Spotlight
(continued from page 1)
concerned about the growth of rock mining industries along the river and the impact that these industries may have on the water quality. Michael wanted to be a part of the effort to watch for any changes in water quality in this area.

The Baleses have lived in Texas since 1985 and have been certified Texas Master Naturalists since 1999. Michael has worked for more than 20 years in the computer field, supporting clinical applications in the healthcare environment. He currently works for Perot Systems Corporation on the Parkland Health and Hospital Systems Account as an application Delivery Manager. Both he and Connie enjoy working with people throughout Texas in conjunction with the Master Naturalists and Texas Watch as they both share a passion for nature and a desire to teach others to “go lightly on the Earth to help preserve it for all of us.”
As we waited for the kids to arrive, it was quiet, still, and peaceful. Barton Springs felt surprisingly warm against the 64° air temperature, and we were fortunate to catch a glimpse of the partial lunar eclipse that morning. Waiting for the kids was much like waiting for the edge of a big storm to appear on the horizon. While we were setting up the booths and preparing the site, it was obvious that many nature lovers visit the pool with an almost religious regularity as a part of their early morning routines, despite the bracing 68-degree water temperature. I guess this is in keeping with the famed “Keep Austin Weird” slogan seen all over Austin.

If you have not been to Barton Springs Pool before, you should make it a priority to at least visit. Its massive size, clear cold water, and natural substratum rivals the great San Solomon artesian spring at Balmorhea State Park in West Texas. Like many other cultural cornerstones on Earth, Barton Springs is near and dear to people’s hearts and represents much more than a good place to swim. In many ways, it is our personal “canary in the coal mine” and serves as an indicator of how land use is affecting water quality.

Then the buses came…and the teachers and students slowly made their way to the stations. As kids got into the kayaks (this was a first-time experience for most of them) I could hear repeated yelps as they sat in the small puddle of water in the seat. Soon after, they were careening down the pool with smiles and laughter while trying to navigate to the finish line.

We all know that clean water is a vital element of life. Yet, outside the small water quality monitoring community, not many people have heard of World Water Monitoring Day (WWMD). Since the 30th anniversary of the 1972 Clean Water Act, Texas Watch has joined with our network of partners, volunteer monitors, America’s Clean Water Foundation, and the International Water Association to promote water awareness through myriad messages that focus on nonpoint source (NPS) pollution themes and water monitoring.

As in past years, we asked monitors to sample at their site and submit the data during the month-long World Water Monitoring Day event. In addition to a WWMD training and several presentations, this year we focused our educational efforts on a huge event at Barton Springs Pool in Austin’s Zilker Park (see article and photos, next page). Texas Watch partnered with the City of Austin, Lower Colorado River Authority, Texas Parks and Wildlife Department, and many volunteers to host a total of 600 participants, including 390 middle and high school students, on the banks of Barton Springs. This free, one-day event was an exciting, hands-on opportunity for middle and high school students to learn about the watersheds in which they live, how watersheds work, and how protecting their waters can have beneficial impacts downstream. Students were able to observe the endangered Barton Springs Salamander, operate watershed models, learn about NPS pollution and groundwater dynamics, perform water quality tests, view live reptiles, and participate in many other fun activities.

Of course, WWMD is much larger than our Texas events. With more than 50 countries and 6,000 sites registered, there is a wealth of data and stories to share. For more information about the World Water Monitoring Day event and to view the data online, visit http://www.worldwatermonitoringday.org.
400 Students “Splash into Learning” at Zilker Park in Austin

Nearly 400 middle school students from eight Austin area schools attended this year’s “Splash into Learning” event October 17th in celebration of World Water Monitoring Day. Students and teachers came from the following schools: Small Middle School, Lamar Middle School, Dessau Middle School, Barrington Elementary School, Walnut Creek Elementary School, T. A. Brown Elementary School, Kealing Middle School, and Hope Lutheran. Thank you to all who came, especially to the 110 volunteers who made this event possible!
Signing in for the day's events.

Practicing boater safety.

Finishing a kayak run.

Testing for nonpoint source pollution impacts.

Demonstrating the watershed concept.

Overview of water safety.
Lower Colorado River Authority Hosts “Waste in Place” Workshop

By Amanda Ross, LCRA

Two years ago, a Colorado River Watch Network volunteer in the Palacios area highlighted a severe illegal dumping problem in the Tres Palacios River in Matagorda County. This led to a cooperative effort between the Lower Colorado River Authority (LCRA), the Matagorda Health Department, Bay City Police Department, and the Texas Commission on Environmental Quality (through a U.S. Environmental Protection Agency 319(h) nonpoint source pollution grant) to develop an educational campaign against illegal dumping in the lower Colorado River basin and its tributaries.

As part of this grant, LCRA, in partnership with Texas Disposal Systems (TDS), sponsored a teacher workshop on August 4, 2005, at the TDS facility in Creedmoor. Teachers from all levels and throughout the Colorado River basin took part in the workshop and received “Waste in Place” curriculum developed by Keep America Beautiful. The curriculum provides teachers with the tools to educate their students about the proper disposal of solid waste, the benefits of recycling, and environmental stewardship. For one of the hands-on activities, teachers constructed “garbage pizzas” – three-dimensional pie charts with each slice of pizza representing a different municipal solid waste category. The largest slice of pizza (37%, paper/paperboard) is also one of the easiest to recycle. The day concluded with a tour of TDS, where teachers observed garbage being added to the landfill, as well as the composting operation, bringing to life many of the topics discussed in the curriculum.

Many people think of water quality problems as something that changes the color of the water or makes the water smell bad, but illegal dumping of waste items can be just as detrimental to an aquatic ecosystem. It is through the proper disposal of unwanted items ranging from leftover car oil to large pieces of furniture that will create a cleaner environment. This project was started by one volunteer who chose to speak up about a problem in their area. Thank you to all our volunteers who make a difference every day!

Workshop participants show off their “garbage pizza” pie chart.

Texas Watch Welcomes Four New Staff Members!

By Terry Wendland, Texas Watch

In September 2005, Texas Watch welcomed four new staff members to our team.

Zhijun Yao – Ph.D. Research Assistant. Zhijun received his Master of Science degree in geographic information systems (GIS) from Nanjing University in China and is currently pursuing his Ph.D. in GIS at Texas State University–San Marcos. He is skilled in managing databases and developing management information systems. He also has several years of experience with GIS and...
This fall, Texas Watch was presented an award by the International Boundary and Water Commission, U.S. Section, the Texas Commission on Environmental Quality, and the Friends of the Rio Grande for its efforts to promote environmental education and outreach in the Rio Grande Basin.

Texas Watch wishes to acknowledge the strong support provided by Wayne Belzer and IBWC in the form of 25 monitoring kits, presentations, and general support for conducting regional meetings, and for document translation. This support was instrumental in accomplishing the following:

- Training sixteen teachers from the Laredo Independent School District and approximately 20 teachers from Nuevo Laredo as Certified Water Quality Monitors, as well as three City of Laredo and six Nuevo Laredo staff. The City of Laredo in turn trained twelve Gary Job Corps participants.
- Conducting a regional meeting held at the City of Laredo Public Works offices, in which forty-four people from the U.S. and Mexico participated to learn about nonpoint source pollution issues on both sides of the border.
- Creating materials that will facilitate cross-border growth of water quality monitoring and education.

These efforts laid the groundwork for a new grant that Texas Watch received this year to expand efforts in Laredo and Nuevo Laredo. Once again, IBWC is present to provide the much needed resources and organizational credibility to ensure long-term success of water quality related public outreach and education efforts along the Rio Grande.

Nyta Brown – Graduate Research Assistant. Nyta is currently pursuing her Master’s degree in nature and heritage tourism at Texas State University–San Marcos, where she plans on graduating in the summer of 2006. Her plans after graduating include taking a couple of weeks to hike part of the Appalachian Trail and then seeking employment with an organization that teaches experiential environmental education to children and/or adults. She is also working on her license as a sign language interpreter, which she hopes to complete within the next two years. In addition, she is enjoying watching her children’s growth and educational achievements. Nyta is working mainly on the program’s Measures of Success and assists with training and outreach.

William Flowers – Student Assistant. William is a junior at Texas State University–San Marcos, majoring in geographic information science with a minor in music. He plans to continue his education with a Master’s degree in the field of urban and regional planning. Upon completion, he plans to return to his hometown of Houston and “help create some order as it keeps growing.” William is assisting with developing a filing system for volunteer monitor data sheets and with computer-related trouble-shooting, in addition to general clerical assistance.

Lisa Cruces – Student Assistant. Lisa is an international relations major currently attending Texas State University–San Marcos. Her favorite pastimes include reading, photography, listening to music, and spending time with friends and family. Lisa is assisting with background research on foundation funding sources, as well as general clerical assistance.

GIS application development. He is joining Texas Watch as our database manager and is also assisting with training and outreach.
Ken Barton has regularly participated in the Texas Watch volunteer water quality sampling program with his Edna Junior High students. From November 1993 to February 2004, Mr. Barton typically had one or two students on-hand to assist with the 126 consistently collected samples at the Lake Texana at Simon Cove Dock site. While many Texas Watch monitors sample with such regularity, very few exhibit the dedication to thorough documentation, consistency with sample time, or exactness with meeting data quality objectives and prescribed methods. Furthermore, the high-caliber field notes highlight aquatic vegetation issues at this site and enable data users to gain substantially increased insight to the conditions of the lake. Mr. Barton should be recognized for his exemplary efforts!

Want to win a free Texas Watch t-shirt?
Because Mr. Barton's data set is so complete and extensive, it provides very valuable information that tells a unique story of Lake Texana. A closer examination could also be an excellent exercise in data analysis. If you look at the information provided here, you may be able to “read between the lines” and present a possible explanation as to why water quality trends have improved so dramatically between 2000 and 2004. If you're up to looking at the data and maybe doing a search or two on the Internet, we challenge you to submit your own conclusion. The first monitor to contact Texas Watch with the correct answer will receive one of the last Texas Watch t-shirts available. Please send your response to JP30@txstate.edu or call toll free at (877)506-1401.

To capture recent trends at the Lake Texana site, we’ve chosen to focus on the last five years of data. Fifty-eight samples were collected between 2000 and 2004. All data were collected within prescribed quality assurance project plan specifications, and the sample results are intended to be used for education and research, baseline, local decision making, problem identification, or other uses deemed appropriate by the data user. Two graphs were compiled to assist the data user in obtaining information from the collected data (Figures 1 and 2). For all graphs, time is located on the “x” or horizontal axis and is chronologically listed from oldest to most recent sampling. The “y1” and

![Figure 1. Temperature and dissolved oxygen.](image)
"y2" axes contain the constituent(s) of interest. Data collected by Ken and his student monitors includes: pH, specific conductivity, water and air temperature, dissolved oxygen, flow severity, days since last precipitation, total depth, sample depth, Secchi depth, field observations, and other parameters. This set of parameters is typical of data gathered by most Texas Watch volunteer monitors.

All pH values were within standard numeric criteria and expected ranges. The pH average was 7.5 su, with a median value of 7.6 su. There is an increasing trend in pH values from 2000 to 2004, with values ranging from 6.7 su to 8.3 su, respectively.

Specific conductivity values were within expected ranges for this region. Specific conductivity (SC) values average 195 µS, with a median of 200 µS. There is an increasing trend from 2000 to 2004, with values ranging from 60 µS to 290 µS, respectively.

Dissolved oxygen values averaged 7.12 mg/L, with a median of 6.8 mg/L (see Figure 1). Eighteen of fifty-eight samples were less than the “exceptional” numeric criterion of 6.0 mg/L, resulting in thirty-one percent of the samples exceeding this aquatic life use standard. There is an increasing trend from 2000 to 2004, with values ranging from 2.9 mg/L to 10.6 mg/L, respectively. The correlation coefficient, or the r² value, appears to show that water temperature has influence on dissolved oxygen fluctuations. Water temperature and dissolved oxygen clearly show an inverse relationship. Typically, these influences seem to be more dominant in shallow water bodies with slow flow or movement.

The Secchi depth average value was 0.21 meters, with a median value of 0.17 meters (see Figure 2). There is an increasing trend from 2000 to 2004, with values ranging from 0.1 meters to 0.71 meters, respectively. This seems to mimic total depth trends. There is an increasing trend from 2000 to 2004 with total depth values ranging from 0.15 meters to 1.01 meters, respectively.

While we’re celebrating Ken and Edna Junior High’s fantastic efforts, he is just one of many thousands of volunteer monitors in Texas and around the world. It’s great to see people taking it upon themselves to explore our world in new ways in an effort to protect and preserve it for future generations. Thank you all for taking on this responsibility!
Congratulations to our New Water Quality Monitors!

Russell Adams Rosaleda Duenez Soonkwan Hong Marlene Morgan Nancy Quested Jessica Spangler
Darlene Allor Dana Duncan Robert Horton Ruby Morris Nathan Raemsch Jennifer Stevenson
Maria Alonso Lynda Edone Mike Jessen Victoria Morris Rosary Rangel Daniel Thompson
Lisa Anderson Ron Ellis Nikio Jo Omar Al Nasser Kristi Rico Apifinnie Trevino
Sara Anderson Patrick Englehardt Judy Kayser Greg Newberry Raquel Rivas Karen Turner
Jason Arbogast Yvonne Estrada Michele King Karen Nickel Maggie Rodriguez Teresa Vandegriff
Jessica Badillo Chris Faught Barbara Kirkos Mauricio Ondarza Yvette Ortiz Frances Walker
Rick Barrera Stephanie Feeley Angela Kissel Joseph Kleeman Brenda Paloski John Wamsley
Jeri Biddle Don Fielding Joseph Kleeman Amanda Kubesch Amanda Pannkuk Marilyn Weiser
Debbie Bolin Brittney Ford Kristen Knoedler Stephanie Langenberg Bonnie Patterson Cindy Wiles
Emilea Bolin Paula Foreman Amanda Kubesch Kristi Rico Yoridia Peracta Hope Williams
Kathy Brick Shannon Frazier Stephanie Langenberg Langenberg Hannah Perez Janet Wolber
John Brown Tracie Gallion Jiaqinling Liu Linda Lou Charles Perna Kathryn Zerbi
Nyta Brown James Gettemy Lois Lueddecke Michael Manison Jamie Poland Roxanne Zimmer
Lorena Bush Richard Geyer Lindsey Giasson Michelle Manison Miguel Mireles
Michael Chapa Lindsay Giasson Glen Gilcrease Angela Manison Nancy Quested Jessica Spangler
Ruben Chavez, Jr. Juana Gomez Juan Gomez Michelle Manison Nancy Quested Jessica Spangler
Shelley Chisman Margaret Grice Margaret Grice Aziel Robison Nancy Quested Jessica Spangler
Leslie Comstock-Day Axel Grossmann Fredroid Grossmann Brenda McGeorge Nancy Quested Jessica Spangler
Victoria Cornwell Angela Lufol Brenda McGeorge Victor Mendoza Nancy Quested Jessica Spangler
Reona Cox Laura Hammill Laura Hammill Katherine Medrano Nancy Quested Jessica Spangler
Eduardo Davari Yukako Honda Yukako Honda Victor Mendoza Nancy Quested Jessica Spangler
Ken Davis Bob Harris Bob Harris Mikie Miller Nancy Quested Jessica Spangler
Delmonica Dean Ryan Hebrink Ryan Hebrink Edward Mireles Nancy Quested Jessica Spangler
Sara Dilbert Camille Hefterman Camille Hefterman Felicia Mireles Nancy Quested Jessica Spangler

Texas Watch Newsletter

Texas State University-San Marcos
Department of Geography, ELA 375
601 University Drive
San Marcos, TX 78666
Toll free: (877) 506-1401
E-mail: texas_watch@geo.txstate.edu
Web: www.texaswatch.geo.txstate.edu

TSU-San Marcos is an equal opportunity/affirmative action employer. This agency does not allow discrimination on the basis of race, color, religion, national origin, sex, disability, age, sexual orientation or veteran status.

For more information contact us at:

Printed on recycled paper.

Prepared in cooperation with the Texas Commission on Environmental Quality and the U.S. Environmental Protection Agency.

Texas Watch
Texas State University-San Marcos
Department of Geography, ELA 375
601 University Drive
San Marcos, TX 78666