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Abstract Recent literature reviews of bioassessment

methods raise questions about use of least-impacted ref-

erence sites to characterize natural conditions that no

longer exist within contemporary landscapes. We explore

an alternate approach for bioassessment that uses species

site occupancy data from museum archives as input for

species distribution models (SDMs) stacked to predict

species assemblages of freshwater fishes in Texas. When

data for estimating reference conditions are lacking, devi-

ation between richness of contemporary versus modeled

species assemblages could provide a means to infer relative

biological integrity at appropriate spatial scales. We con-

structed SDMs for 100 freshwater fish species to compare

predicted species assemblages to data on contemporary

assemblages acquired by four independent surveys that

sampled 269 sites. We then compared site-specific

observed/predicted ratios of the number of species at sites

to scores from a multimetric index of biotic integrity (IBI).

Predicted numbers of species were moderately to strongly

correlated with the numbers observed by the four surveys.

We found significant, though weak, relationships between

observed/predicted ratios and IBI scores. SDM-based

assessments identified patterns of local assemblage change

that were congruent with IBI inferences; however, mod-

eling artifacts that likely contributed to over-prediction of

species presence may restrict the stand-alone use of SDM-

derived patterns for bioassessment and therefore warrant

examination. Our results suggest that when extensive

standardized survey data that include reference sites are

lacking, as is commonly the case, SDMs derived from

generally much more readily available species site occu-

pancy data could be used to provide a complementary tool

for bioassessment.

Keywords Bioassessment � Community modeling �
Conservation � Fish biodiversity � Species distribution
modeling � Reference sites

Introduction

Bioassessment is an important element within efforts to

protect, monitor, and restore natural resources. Bioassess-

ment generally relies on benchmarks ideally designed to

represent historical, pristine conditions (Karr 1981; Fausch

et al. 1984) that, in today’s world, are increasingly difficult

to find. The degree to which an assessment is considered

accurate depends upon how well benchmarks characterize

inferred conditions along gradients of environmental

degradation. Because it is rare to have accurate data for

historical conditions, bioassessment benchmarks often rely

on contemporary data reflecting varying degrees of alter-

ation. The practice of applying contemporary, least-dis-

turbed, reference sites as benchmarks is risky and generally
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cannot be applied across broad spatial scales (Seegert

2000). This approach also can result in shifting baselines

and further environmental degradation (Pauly 1995; Pin-

negar and Engelhard 2008; Humphries and Winemiller

2009), especially in developed landscapes where ecological

conditions deviate greatly from natural states. The refer-

ence site approach to bioassessment can suffer from

problems and costs associated with quality and quantity of

reference site data (Bowman and Somers 2005; Chessman

et al. 2008; Hawkins et al. 2010), inconsistent reference

definitions (Stoddard et al. 2006; Whittier et al. 2007;

Herlihy et al. 2008), inability to identify causal mecha-

nisms in multimetric (e.g., IBIs—Suter II 1993; Hawkins

et al. 2010) and multivariate approaches (e.g., RIVPACS,

AUSRIVAS—Dolédec and Statzner 2010), and non-scal-

ability or non-transferability of indices across regions and

studies (Norris and Hawkins 2000; Cao and Hawkins

2011). Transferable metrics scalable to large regions that

lack long-term survey data are needed and will require

exploration of new methods that reduce reliance on least-

disturbed reference sites as benchmarks (Dziock et al.

2006; Dolédec and Statzner 2010) and complement current

bioassessment techniques.

Criticisms of bioassessment approaches emphasize

methods used for estimating reference benchmarks (Suter

II 1993; Karr and Chu 1999; Norris and Hawkins 2000;

Seegert 2000). The two most common approaches are

regionalization and discriminative modeling using envi-

ronmental covariates. Hawkins et al. (2010) point out that

regionalization generally has insufficient precision or

numerical criteria to detect ecologically meaningful devi-

ations, and discriminative models, exemplified by The

River Invertebrate Prediction and Classification System

(RIVPACS—Wright et al. 1984) and its derivatives (e.g.,

AUSRIVAS—Turak et al. 1999), rely on reference sites

and standardization of sampling effort for data for cali-

bration, and therefore do not allow extrapolation beyond

the range of calibration data. Both of these shortcomings

limit transferability, especially in degraded and data-poor

regions. Recent bioassessment literature reviews (Dolédec

and Statzner 2010; Hawkins et al. 2010) identify Chessman

and Royal’s (2004) approach as an alternative that cir-

cumvents the need for reference sites (also see Speight and

Castella 2001; Stranko et al. 2005; Chessman 2006; Labay

et al. 2011). Chessman and Royal (2004) started with a

known pool of potential colonists and used coarse-scale

environmental parameters and known tolerances of species

as filters to predict assemblage composition for any site.

Rather than model historical assemblages, this approach

simulates ‘null’ assemblages based on species’ physiolog-

ical tolerances and biogeographic limitations for compar-

isons to observed assemblages (Soberón 2007; Soberón and

Nakamura 2009). We here use the term ‘null’ to describe

the predicted assemblages as they are designed for com-

parison to contemporary surveys, and in this way, it is used

analogously to a null hypothesis.

Hawkins et al. (2010) considered Chessman and Royal’s

(2004) approach conceptually appealing but lacking suffi-

cient validation. Although applications in the stream

bioassessment literature are indeed scarce (but see Chess-

man 2006; Labay et al. 2011; Growns et al. 2013), major

advances in the spatial modeling of biodiversity at the

community level are enabling bioassessment without use of

reference sites (Austin 2002; Scott 2002; Guisan and

Thuiller 2005; Ferrier and Guisan 2006; Mateo et al. 2012).

Species distribution models (SDMs) are becoming

increasingly popular as predictors of biodiversity patterns

(Ferrier and Guisan 2006; Costa et al. 2009; Guisan and

Rahbek 2011; Peterson et al. 2011; Kuemmerle et al. 2012;

Vasconcelos et al. 2012), in large part due to recent

improvements in methods (Elith et al. 2006) and

advancements in digitization of broad-scale environmental

coverages (Turner et al. 2003) and biological occurrence

databases (Guralnick and Van Cleve 2005).

SDMs constructed with large databases, such as those

associated with major natural history collections, could be

used in what Ferrier and Guisan (2006) identify as a

‘‘predict first, assemble later’’ approach to modeling com-

munities. Compared to other community modeling

approaches, this method has the advantage of producing

individualistic species responses and allowing disparate

surveys to be combined (Gioia and Pigott 2000; Guisan and

Theurillat 2000; Lehmann et al. 2002), whereas existing

bioassessment methods require consistent long-term com-

munity sampling across all sites to be assessed. Concep-

tually, the ‘‘predict first, assemble later’’ approach is not

novel (see Guisan and Theurillat 2000; Olden 2003; Pep-

pler-Lisbach and Schröder 2004; Gelfand et al. 2005;

Leathwick et al. 2005; Baselga and Araujo 2010; Mateo

et al. 2012); however, more research is needed to better

determine its bioassessment applications.

Here we test the potential for SDMs to provide a basis

for bioassessment of stream fishes in Texas, USA, using

SDM-based modeled ‘null’ fish assemblages that we use as

benchmarks for comparisons with contemporary assem-

blages. Specifically, we (i) produced SDMs for 100 fish

species from major river basins of Texas; (ii) created local

benchmark assemblages by stacking single-species SDMs

for the potential species pool of our study area; (iii) com-

pared the SDM-based assemblage predictions with con-

temporary fish assemblage data from four independent

surveys, two with repetitive sampling protocols that permit

relatively robust model evaluation, and two with associated

multimetric-based indices of biotic integrity (IBI) scores

based on methodologies used by most state and federal

agency bioassessment efforts; and (iv) compared ratios of
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observed/predicted assemblages and examined their rela-

tionship to IBI scores.

Methods

Study Area

The extent used for SDM development was the political

boundary of the state of Texas divided into a grid of

931,808 30-arc-second cells (mean cell area 0.73 km2).

This extent and resolution encompasses species occurrence

records, environmental data used in modeling, and obser-

vations used for comparison (Fig. 1). The study region

experiences an east–west annual precipitation range of

approximately 152–20 cm, resulting in vastly different

habitat conditions and a general decline in species richness

from east to west (Hubbs et al. 2008).

Fish Occurrence Records for SDMs

Fish occurrences for SDM development were obtained

from the recently compiled and publically accessible

Fishes of Texas (FoTX) database maintained by Texas

Natural History Collection (TNHC), University of Texas at

Austin (Hendrickson and Cohen 2012). The FoTX database

project compiles and verifies specimen records collected in

Texas that are held in 33 museums worldwide (see www.

fishesoftexas.org). Specimen records in TNHC are served

to the publically accessible national Global Biodiversity

Information Facility. We attempted to construct SDMs for

all native fishes classified as freshwater by Hubbs et al.

(2008) (see Table S1, Online Resource 1) and known to

occur in the major Texas river basins for which we had

independent survey data. Non-natives were excluded, as

were three species native to the state but known to have

high introduction rates from stocking or bait bucket release

(Notemigonus crysoleucas, Morone chrysops, and Pime-

phales promelas), and models were not attempted for

species having \10 unique occurrence locations on the

environmental layer grids (Phillips and Dudı́k 2008).

Finally, three species groups determined by TNHC staff to

have high misidentification rates or recent taxonomic

revisions were combined, by aggregating individual spe-

cies models, and treated as single species for predictions:

(i) Etheostoma lepidum and Etheostoma spectabile, (ii)

Dionda episcopa and Dionda argentosa, and (iii) species of

the genus Gambusia (G. affinis, G. amistadensis, G. geor-

gei, G. gaigei, G. geiseri, G. heterochir, G. senilis, G.

nobilis, and G. speciosa).

Species occurrence records with an estimated georefer-

encing error (radius)[1 km were excluded from modeling

to assure that input species occurrences corresponded in

spatial resolution to environmental layers. Occurrence

records before 1950 were excluded so that occurrence data

were contemporaneous with climatic variables used

(1950–2000; Table 1). Although such temporal limitation

biases estimation of species’ full historical ranges, the

quality and size of the FoTX database to some degree

alleviate this bias. Further, by modeling with variables not

directly influenced by humans, estimated predictions are

relatively unbiased with regards to species’ historical ran-

ges (Chessman and Royal 2004).

Environmental Variables

The environmental variables used in SDM construction

(Table 1) were selected in part on the basis of expert

opinion that ranked preliminary models using varied sub-

sets of all available variables that were done for a set of

species with well-known distributions (see Labay et al.

2011 for a detailed description). The climatic, hydrologic,

and topographic variables were used to attempt to account

for broad-scale physiological constraints as determinants of

distributions (Graham and Hijmans 2006), and the two

hydrology-based geographic variables control for historical

zoogeography by categorically constraining predictions of

species presence to watersheds from which they are doc-

umented. The three hydrological variables sourced from

the National Hydrography Dataset Plus (mean annual flow,

mean annual velocity, and cumulative drainage; USEPA

and USGS 2005) were created by converting NHD catch-

ments (avg. 2 km2) attributed with the select metrics to a

30-arc-second raster grid using ArcGIS polygon to raster

tool.

All environmental variables are represented by a grid

that covers the entire study area. The raw grid data wereFig. 1 Distribution of sample localities for the four survey datasets
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used for modeling, as opposed to a stream-segment based

framework, to retain maximum spatial, and thus data,

resolution. In a stream-segment-based framework,

attributing environmental data to stream network segments

would require aggregation of the raw data at a catchment-

scale [\1 km cell data (30 arc-seconds) into a *2.5 km2

NHD catchment]. Modeled probability estimates from the

SDMs were extracted from the same data cell in which the

independent survey data record occurred (see SDM con-

struction and evaluation).

SDM Construction and Evaluation

Models were constructed using the maximum entropy

algorithm encoded in the Maxent software package (Ver-

sion 3.3.4, Phillips et al. 2006), known to be robust for

species distribution modeling with presence-only records

(Elith et al. 2006) and recently shown to be nearly math-

ematically equivalent to a Poisson regression model

(Renner and Warton 2013). We restricted ourselves to

Maxent and refrained from methodological comparisons

involving multiple modeling algorithms, parameteriza-

tions, and validation procedures in order to focus on our

primary objective of assessing a specific SDM application

in bioassessment using common methods. To that aim, we

implemented Maxent with default parameterization rec-

ommendations (Phillips and Dudı́k 2008), with models

replicated 100 times randomly withholding in each repli-

cate 40 % of localities as ‘test’ records, with the remaining

60 % serving as model ‘training’ records. Individual spe-

cies’ model performance was evaluated using a receiver

operating characteristic (ROC) analysis. The ROC analysis

characterizes model performance at all possible thresholds

using the area under the curve (AUC). A model with per-

fect discrimination would have an AUC of 1 while a model

that predicted species occurrences at random would have

an AUC of 0.5 (Hanley and McNeil 1982). We here rec-

ognize that validation using AUC, while intuitively

appealing, has been criticized as misleading as it tends to

overestimate model quality, may show spurious high per-

formance with small sample sizes, and may reward over-

parameterization (Lobo et al. 2008). We ultimately utilize

the AUC statistic (albeit conservatively, see below) for its

commonality and the fact that for most places in the world

the kind of data needed over broad scales for better vali-

dation are not available. Thus, our models are internally

Table 1 Environmental variables used in models

Layer category Description Source

Topological Aspect 1 km DEM

Topological Slope 1 km DEM

Topological Compound topological index [ln(acc.flow/tan[slope])] 1 km DEM

Topological Altitude 1 km DEM

Climate Annual mean temperature Wordclim variable 1

Climate Mean diurnal range [mean of monthly (max temp - min temp)] Wordclim variable 2

Climate Isothermality (P2/P7)(*100) Wordclim variable 3

Climate Temperature seasonality (SD 9 100) Wordclim variable 4

Climate Max temperature of warmest month Wordclim variable 5

Climate Min temperature of coldest month Wordclim variable 6

Climate Temperature annual range (P5–P6) Wordclim variable 7

Climate Annual precipitation Wordclim variable 12

Climate Precipitation of wettest month Wordclim variable 13

Climate Precipitation of driest month Wordclim variable 14

Climate Precipitation seasonality (coefficient of variation) Wordclim variable 15

Climate Precipitation of wettest quarter Wordclim variable 16

Climate Precipitation of driest quarter Wordclim variable 17

Climate Precipitation of warmest quarter Wordclim variable 18

Climate Precipitation of coldest quarter Wordclim variable 19

Geographic Major river basins Texas Water Development Board

Geographic 8-Digit hydrologic unit code (HUC) United States Geologic Survey

Hydrologic Cumulative drainage National Hydrology Dataset plus

Hydrologic Mean annual flow National Hydrology Dataset plus

Hydrologic Mean annual velocity National Hydrology Dataset plus

838 Environmental Management (2015) 56:835–846
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validated through resubstitution (AUC statistic) and not

through independent, reference (historical) data, which are

not available for our study area. Exploring how the model

predictions compare to contemporary observations across

gradients of effort and richness (the four independent sur-

vey datasets) is intended to provide approximations of

model accuracy and precision.

Species models were considered reliable and retained

for modeled community construction if they had an aver-

age test AUC over 100 replicates [0.9 and a \5 % dif-

ference between average test and training AUC (AUCdiff).

Despite the maximum entropy algorithm’s accounting for

correlations among variables, using a large number of

variables raises dangers of over-fitting. Utilizing both the

AUCdiff criterion and the variable set-selection process

involving expert opinion conservatively reduces the risk of

over-fitting (Warren and Seifert 2010).

For each grid cell, Maxent calculates a continuous

probability of occurrence estimate ranging from 0 to 1. To

assign species to a predicted community for any particular

site (grid cell corresponding to a site sampled in an inde-

pendent survey), we converted continuous modeled prob-

ability estimates to a binary prediction of presence or

absence using the minimum training presence threshold

(MTP; Pearson et al. 2007; Raxworthy et al. 2007), which

is the lowest probability associated with the occurrences

used in model construction. This species-specific threshold

is used because of its tendency to recognize habitats that

are not necessarily the most suitable but nevertheless uti-

lized, providing a broad estimate of potential colonization.

Thus, while presence-only modeling, as done here, does

not account for estimates of species prevalence in the

landscape and thus does not estimate true probabilities

(Elith et al. 2011), the use of the MTP threshold is an

attempt to account for differential prevalence among spe-

cies (see Fig. S1, Online Resource 1). This species-specific

threshold approach has been shown to produce better pre-

dictions across species than does the use of a single

threshold (Liu et al. 2005) and has the benefit of allowing

the assessment of compositional dissimilarity between

observations and predictions that would not be possible if

simple richness predictions were used. Additionally, when

using Maxent for SDM construction, the use of a threshold

has been shown to be more appropriate compared to

summing probability values (Cao et al. 2013).

Independent Fish Survey Data

Results from four independent surveys of fishes in wade-

able streams were compared to model predictions. Survey

data were independent of the museum data used to create

SDMs and are generally more recent (post 1998) compared

to fish data used to construct models (1950–2000). The four

surveys differed in location (Fig. 1), objectives and

methodologies (Table 2), and together sampled 269 unique

sites. We refer to the surveys either by the institution of the

collectors or by the agency responsible for funding the

surveys: Texas Tech University (TTU), Texas State

University—San Marcos (TXST), Texas Commission on

Environmental Quality (TCEQ), and Texas Parks and

Wildlife Department (TPWD).

While methodological differences among surveys

caused us to analyze them separately, we provide general

conclusions and discussion based on two survey categories.

We posit that by having sampled repeatedly at each site

over extended periods, TTU and TXST should provide

more reliable estimates of species presence/absence at each

site and therefore better allow for validation of the modeled

assemblages based on stacked SDMs. In contrast, TCEQ

and TPWD had fewer replicate samples (none in the case

of TPWD), but used standardized sampling methodologies

characteristic of state and federal agency bioassessments

(Linam et al. 2002) and provided multimetric-based IBI

scores (Karr 1981; Fausch et al. 1984). Thus, data from

TCEQ and TPWD surveys are appropriate for exploration

of the utility of our model-based approach as an alternative

or complement to current bioassessment methods.

Comparison of Observed and Predicted

We calculated statistics to help evaluate ability of stacked

SDMs to predict local species assemblages. For the two

surveys with greater number and frequency of samples

(TTU and TXST), we calculated average species model

sensitivity (% of occurrences that were successfully pre-

dicted) and specificity (% of non-occurrences that were

successfully predicted). For each survey, we compared the

number of predicted species observed and the number of

model-predicted species, hereafter referred to as observed/

predicted, for number of species per surveyed site. The

observed/predicted metric varies from 0 to 1 and allows for

assessing compositional deviance from models among

sites. We assessed the linear regression relationship of

observed/predicted for each survey. Finally, for numbers of

species observed/predicted per site for each survey, we

calculated Theil’s inequality coefficient (U),

U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

P

ðyi � xiÞ2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

P

y2i

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

P

x2i

q ;

where yi is the number of predicted species observed and xi
is the model prediction. Theil’s inequality coefficient pro-

vides a measure of distance between predicted values and

observed values (Piñeiro et al. 2008), ranging from 0 to 1

with 0 indicating perfect agreement. This coefficient is
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similar to the correlation coefficient but is preferred in this

case for its incorporation of slope (Smith and Rose 1995),

and thus a goodness-of-fit measure that allows comparison

against a theoretically perfect (1:1) relationship.

Relationships between observed/predicted ratios and IBI

scores provided in the TPWD and TCEQ survey reports

were examined using linear regression within ecoregion

groupings described in a 2002 Texas Parks and Wildlife

Department study (Linam et al. 2002). The TPWD and

TCEQ surveys together sampled in four of Omernik’s

(1987) ecoregions, which were combined for region-

specific metric calibration into two pairs of ecoregion

aggregates due to similarities in fish assemblage compo-

sition (Linam et al. 2002). The two groups were ecoregions

33 (East Central Texas Plains) and 35 (South Central

Plains), hereafter ecoregion 33/35, and ecoregions 29

(Cross Timbers) and 32 (Texas Blackland Prairies), here-

after ecoregion 29/32.

Additionally, to assess the relationship between

observed/predicted ratios and IBI with regards to the

region’s state agency-determined water body beneficial use

designations, we transformed IBI scores for all sites in the

TCEQ and TPWD datasets into aquatic life use (ALU)

designations (Exceptional, High, Intermediate, and Lim-

ited; see Linam et al. 2002 for details) that are widely used

by regional state agencies. A one-way ANOVA followed

by Tukey’s test for unequal sample sizes was used to test

for differences (a = 0.05) in observed/predicted ratios

among the four ALU designations. These analyses were

performed with the free software R, version 2.15.1 (R

Development Core Team 2012).

Results

From the 131 freshwater fish species or species groups

known from the study area, SDMs for 100 met our a priori

criteria for model quality ([10 unique geographic records,

avg. test AUC[0.9, and AUCdiff.\5 %; Table S1). The 31

species for which we were unable to create reliable models

are extinct (Notropis orca and Notropis simus simus),

extirpated from our region (Hybognathus amarus), had too

few precisely georeferenced occurrence points matching

unique environmental grid units (e.g., Macrhybopsis

storeriana, Notropis chihuahua, Pteronotropis hubbsi,

Cyprinodon eximius, and Etheostoma fonticola), or are

Table 2 Independent fish survey dataset comparison

Dataset TTU TXST TCEQ TPWD

Contributing

institution

Texas Tech University,

Lubbock

Texas State University—San

Marcos

Texas Commission on

Environmental Quality

Texas Parks and Wildlife

Department

Background

and purpose

of survey as

it pertained

to fishes

To explore reproductive

ecology of select cyprinids

and population dynamics

of fishes within the Upper

Brazos River drainage

Multiple independent projects

conducted to assess spatial–

temporal trends in fish

assemblage composition in

various river drainages in

Texas

Assess trait-environmental

relationships in fish

assemblages and assess

biotic integrity of central

and north Texas streams

To determine biotic integrity of

east Texas streams

Relevant

publications

Wilde (2011) Bean et al. (2007), Labay

(2010), Heard et al. (2012),

Kollaus and Bonner (2012)

King et al. (2009),

Winemiller et al. (2009),

and Pease et al. (2011)

Kleinsasser et al. (2004)

No. sites 24 90 64 91

Year range 2008–2011 2003–2011 2006–2008 1998–2000

Gear types Seines Seines and electrofishing Seines and electrofishing Seines and electrofishing

Average no.

samples per

site

7.95 3.68 2.72 1

Average no.

samples per

year per site

2 3.92 0.91 1

Primary

sampling

interval

May and August–September Dependent on study, varies

from monthly to 3/year: Feb–

Mar, Jun–Sept, Nov–Jan

June through August May through October

Site selection

protocol

Wadeable streams that

captured representative

habitats throughout target

watersheds

Perennial, wadeable streams

that captured representative

habitats throughout target

watersheds

Perennial, wadeable

streams that captured

representative habitats

throughout target

ecoregions

Perennial, wadeable streams

selected by randomized

systematic design: equal No.

2nd, 3rd, and 4th order

streams and 30 sites in urban

setting
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wide-ranging but with low occurrence density in the FoTX

database (e.g., Anguilla rostrata, Cycleptus elongatus,

Atractosteus spatula, Lepisosteus osseus, Ameiurus melas,

and Ictalurus furcatus). Nine of the 31 species not mod-

eled, but observed in the independent surveys (Table S1),

were excluded from all analyses.

For TTU and TXST sites, SDM sensitivity averaged 78

and 75 %, respectively, and specificity averaged 79 and

82 %. The linear relationship between number of observed

and predicted species per site was significant for all four

datasets, with better model fit and steeper slopes for data-

sets with greater frequency of sampling and fewer potential

species (TTU[TXST[TCEQ[TPWD; Fig. 2). Inter-

cepts were closer to zero for TTU and TXST than for

TPWD and TCEQ (Fig. 2). Theil’s inequality coefficient

was positively correlated with number of sites and sam-

pling frequency, TTU (U = 0.28); TXST (0.32); TCEQ

(0.33); TPWD (0.47).

Positive relationships between observed/predicted ratios

and IBI scores were detected across all ecoregions sampled

by TCEQ and TPWD, with the exception of ecoregion

33/35 for TCEQ (R = 0.08, P = 0.78; Fig. 3). Observed/

predicted ratios differed significantly (F [3,151] = 6.43,

P = 0.0004) among the four ALU designations, showing a

decline in mean observed/predicted ratio from ‘‘Excep-

tional’’ to ‘‘Limited,’’ with these two extremes being dif-

ferent from all other pairwise groupings (Fig. 4) except for

a non-significant (P = 0.16) difference between ‘‘Limited’’

and ‘‘Intermediate.’’ The two middle groupings, ‘‘High’’

and ‘‘Intermediate,’’ did not differ (P = 0.77).

Discussion

This study explored a method for bioassessment that com-

pares modeled estimates of species presence to occurrences

from independent field surveys. Model quality varied, but

robust SDMs were produced for 92 % of native species (or

species groupings) observed by the field surveys. Model-

predicted species assemblages at the 269 independently

surveyed sites were significantly correlated with the

assemblage samples from the surveys. Correlations were

Fig. 2 Relationship between

numbers of native fish species

predicted and observed for all

sites sampled by a TTU,

b TXST, c TCEQ, and d TPWD

surveys. The solid line

represents equality of predicted

and observed species presence.

Regression lines fitted to the

data are presented with adjusted

regression estimates (R2),

standard errors of the regression

estimates (SE), and Theil’s

inequality coefficient (U)
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strongest at sites that were repeatedly sampled (3–4 times

per year; TTU and TXST datasets), and, as expected, we

saw a tendency for stacked models to over-predict richness

compared to survey observations, especially in more spe-

cies-rich eastern parts of the study area and represented by

the TCEQ and TPWD datasets. The term ‘over-prediction’

in this case is used to align with terminology within

established modeling literature (Piñeiro et al. 2008).

Although this tendency to over-predict may be due in part to

environmental degradation, over-prediction has been doc-

umented in other studies using stacked SDMs to estimate

species richness and co-occurrence (Fielding and Bell 1997;

Chessman 2006; Mateo et al. 2012; Calabrese et al. 2013).

Apart from potential deviation resulting from environ-

mental degradation, we suspect that over-prediction in this

study stems primarily from statistical, model-driven

effects. Better understanding of contributing modeling

artifact factors, especially threshold choice (Calabrese et al.

2013) and model parameter selection, and how these

influence patterns of over-fitting should improve accuracy

and precision of probability estimates. Additionally, our

models do not directly account for all factors that influence

assemblage structure at the local level, and therefore the

assemblages resulting from model stacking should be

interpreted as ‘null’ models of assemblage composition

that accounts only for species’ responses to specific abiotic

environmental gradients used in model construction. Two

factors contributing to over-prediction that the models do

not directly account for are biotic interactions (e.g., com-

petitive exclusion, and predation) and differential patterns

of species-specific prevalence, and/or detection.

Accounting for effects of biotic interactions in SDMs

remains a major challenge (Araújo and Luoto 2007).

Ambiguities remain regarding the definition of species

niche space for practical applications of SDMs (Soberón

2007), the role of biotic interactions in niche space, and

how to parameterize models to account for these ambigu-

ities at various scales (Araújo and Guisan 2006). Similar to

this study, Mateo et al. (2012) used stacked SDMs to

successfully estimate patterns of species richness across

environmental gradients and, as in this study, found greater

over-prediction in areas of high richness. They attributed

this to the fact that most SDMs produced to date rely

predominantly on abiotic variables that exert greater con-

trol over biodiversity in harsh climates (e.g., deserts or

alpine ecosystems) than do biotic interactions (Pineda and

Lobo 2009; Pellissier et al. 2012). As our knowledge of

species’ fundamental niches and modeling methods

improve, it should be possible to better account for biotic

interactions in SDMs (Brooker et al. 2007; Heikkinen et al.

2007; Bateman et al. 2012).

Fig. 3 Relationship between index of biotic integrity scores and

observed/predicted ratios for the a TCEQ and b TPWD surveys. Sites

in ecoregion 29/32 are represented by triangles with a solid linear

regression line, and sites in ecoregion 33/35 are represented by circles

with a dashed linear regression line. All within-ecoregion grouping

relationships are significant (a = 0.05) with the exception of TCEQ

ecoregion 33/35. Regression lines fitted to data are presented with

regression estimates (R) and standard errors of the regression

estimates (SE)

Fig. 4 Boxplot with minimum, 1st quartile, median, 3rd quartile, and

maximum of observed/predicted ratios for each aquatic life use

(ALU) designation defined by Linam et al. (2002) for TPWD and

TCEQ survey sites. Mean is indicated by the solid black circle. Solid

horizontal lines indicate groupings of aquatic life use categories that

are significantly different from one another as determined by Tukey’s

pairwise tests

842 Environmental Management (2015) 56:835–846

123



That our models did not directly account for species

prevalence likely also contributed to over-prediction, espe-

cially in the eastern, more species-rich areas of the study

region. Explicitly accounting for species-specific prevalence

is difficult without quality, comparable presence/absence

data over long-time periods, which, if obtained, would allow

more accurate statistical models compared to those obtained

from presence-only SDMs. The minimum training presence

(MTP) threshold was used in this study to attempt to indi-

rectly account for species-specific prevalence (see Fig. S1,

Online Resource 1), and more generally, the influence of

imperfect detection of species. In effect, this threshold

operationalized the idea that ubiquitous taxa, or habitat

generalists, are likely to be observed over a broader range of

habitat suitability than are less prevalent specialist taxa that

are constrained to relatively narrow ranges of habitat suit-

ability (Peterson et al. 2011). Thus the MTP threshold,

although generally broad, partially accounts for documented

assemblage response to influences of dispersal and mass

effect (Hitt and Angermeier 2008, 2011) for widespread

taxa, while tending to restrict presence predictions for less

prevalent taxa to their most suitable environmental condi-

tions. This effect also tends to increased over-prediction in

more species-rich East Texas. More studies are needed that

compare accuracy of stacked SDM richness predictions

across varying thresholds and richness gradients.

Regardless of the mechanisms, differential patterns of

over-prediction across environmental or species-richness

gradients confound attempts to interpret ratios of observed/

predicted species. Given varied model prediction success

across a range of environmental conditions, predictions

should be most accurate when surveys are comprehensive.

Of the four surveys examined here, TTU had the lowest

species richness together with the highest collection effort.

This dataset also produced the highest correspondence

between modeled and observed species assemblages, and

provides a fairly robust opportunity to explore in more

detail how differences between model prediction and

observations could be related to sampling error, variation in

community composition due to natural or anthropogenic

environmental variation, or model-construction artifacts.

Several obligate fluvial specialists in the TTU survey

dataset were predicted to occur at sites where they were not

captured—Notropis potteri at 10 sites, Notropis shumardi

and Notropis volucellus at 8 and 5 sites, respectively—

yet all 3 have historical records in the area surveyed by

TTU (Hendrickson and Cohen 2012). Conversely, some

species not predicted and with no historical occurrence

records in the area were observed—e.g., Aplodinotus

grunniens was collected at 10 sites but predicted at 1. We

have not determined if it has recently expanded into the

upper Brazos River drainage or whether historical sam-

pling efforts simply failed to document it.

In addition to excluding biotic factors, we are aware that

the environmental variables used in the models are a subset

of all possible abiotic dimensions of fish niches. Saline

springs in the Salt Fork watershed of the upper Brazos

River basin (Dutton 1989) have been previously noted to

limit fish community composition to a handful of salinity-

tolerant forms (Hubbs 1957; Ostrand and Wilde 2002), and

this might contribute to over-prediction of species presence

by our models at four sites in the middle to lower reaches

of the Salt Fork surveyed by TTU (Fig. 2a). Unfortunately,

we know of no salinity coverages for our study area that

would allow us to include salinity in our models.

Given that we are comparing our models, with their

previously stated limitations, to the IBI, the basic

assumptions of which have been widely criticized and the

index noted to filled with ‘noise’ (Suter II 1993; Seegert

2000), it is notable that the overall relationships between

our observed/predicted index and IBI scores are significant,

albeit admittedly weak. Despite patterns of over-prediction

and lack of accounting for all factors determining species

distributions, our model predictions provided benchmarks

that correlated with prior IBI-derived ALU groupings,

effectively distinguishing sites with ‘‘excellent,’’ ‘‘aver-

age,’’ and ‘‘poor’’ integrity. Not being able to segregate

between the ‘‘limited’’ and ‘‘intermediate’’ designations

was likely due to low power related to small sample size

(n = 6) for the ‘‘limited’’ designation. Failure to segregate

between the two middle groupings, ‘‘high’’ and ‘‘interme-

diate,’’ is consistent with criticisms of the IBI (Suter II

1993; Seegert 2000) suggesting that the multimetric

approach is primarily useful in identifying extreme cases

where constituent variables are either all low or all high.

This lack of detailed discrimination is caused by aggrega-

tion of multiple variables which could produce similar IBI

scores for highly divergent conditions, effectively obscur-

ing the true condition of the biotic community (Suter II

1993). Lack of stronger concordance could be due, at least

in part, to the inadequacy of both IBIs and models to

account for all factors that restrict species distributions, so

that, consequently, they likely measure different dimen-

sions of habitat and fish assemblage integrity. For example,

many of the IBI metrics measure abundances of species or

guilds, and even though SDMs have been shown to cor-

relate with species abundance (VanDerWall et al. 2009),

they do not explicitly measure abundance.

As a result of the modeling methods and construction

decisions (presence-only data, limitation of occurrence

records to post-1950, no accounting for biological inter-

actions), the list of species predicted to occur at a given site

does not represent an accurate estimate of the historical

assemblage, but instead represents a ‘null’ community

estimated from best available data. While this over-pre-

diction might limit the stand-alone use of this technique as
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123



a bioassessment tool, it provides managers with a target

species list that allows for evaluation of current

assemblages.

Conclusions

Interpretation of most bioassessment benchmarks is com-

promised by the fact that agreed-upon baselines, reference

conditions, and/or validation datasets are almost always

lacking in highly developed landscapes. Establishment of

reference conditions with currently available methodolo-

gies is challenging for regions where watersheds in his-

torical condition are rare or absent. We have demonstrated

potential for readily available specimen-based datasets

compiled by natural history collections to be used with a

stacked SDM approach to quickly provide a landscape-

scale index useful as a species composition baseline for

comparison against contemporary assemblage data, and

complementary to standard, regionalized bioassessment

techniques such as the IBI or RIVPACS.

However, as with most applications based on modeled

systems, conclusions drawn from this technique are subject

to data and methodological limitations. If this approach is

to be considered as an alternative to traditional bioassess-

ment techniques (e.g., IBI or RIVPACS), additional

research is needed to account for methodological uncer-

tainties in probability estimates before this approach can

accurately and confidently identify assemblage deviations

due solely to anthropogenic influences. However, this

approach can immediately offer a complementary per-

spective allowing resource managers to produce target lists

of species based on quantitative and transferable estimation

methods, and generate hypotheses regarding specific spe-

cies exclusions. As an example for implementation, the

produced list of estimated species can be compared to what

was actually caught, and specific taxa or guild exclusions

can be incorporated as individual metrics into a modified

IBI composite metric. In other words, IBI-like metrics

could benefit from a model-based benchmark of species

assemblage composition that could serve as a heuristic tool

generating useful species-specific exclusion hypotheses.

Currently, for our study region, IBIs are calibrated and

restricted to implementation, at an ecoregion scale. Incor-

porating this model-based methodology could allow cali-

bration at the scale of the SDMs used, and thus

automatically incorporate watershed-specific faunal dif-

ferences related to biogeographic history. Managers could

also use this method to improve assessments of whether

current reference sites, often used as benchmarks for

restoration goal-setting, provide reasonable standards with

respect to expected fish community composition.

These methods, and the assemblage predictions they

produce, are easily performed at large scales, and the many

current initiatives to improve and increase availability of

occurrence data and the steadily increasing diversity of

environmental coverages, will improve such model-based

predictions moving forward. We encourage management

agencies to consider adopting this SDM-based bioassess-

ment framework alongside traditional biomonitoring and

assessment protocols to start taking advantage of its ability

to provide pre-defined target species lists, quantified

probabilities of occurrence estimates, and tractable data to

help generate and further explore hypotheses about mech-

anisms controlling species’ distributions likely to also help

refine the methodology. In practice, integration of this

approach could help reduce the widely recognized sus-

ceptibility of bioassessment and ecological restoration to

shifting baselines.
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Araújo MB, Luoto M (2007) The importance of biotic interactions for

modelling species distributions under climate change. Glob Ecol

Biogeogr 16:743–753

Austin M (2002) Spatial prediction of species distribution: an

interface between ecological theory and statistical modelling.

Ecol Model 157:101–118

Baselga A, Araujo MB (2010) Do community-level models describe

community variation effectively? J Biogeogr 37:1842–1850

Bateman BL, VanDerWal J, Williams SE, Johnson CN (2012) Biotic

interactions influence the projected distribution of a specialist

mammal under climate change. Divers Distrib 18:861–872

Bean PT, Bonner TH, Littrell BM (2007) Spatial and temporal

patterns in the fish assemblage of the Blanco River, Texas. Tex J

Sci 59:179

Bowman M, Somers K (2005) Considerations when using the

reference condition approach for bioassessment of freshwater

ecosystems. Water Qual Res J Can 40:347–360

844 Environmental Management (2015) 56:835–846

123



Brooker RW, Travis JMJ, Clark EJ, Dytham C (2007) Modelling

species’ range shifts in a changing climate: the impacts of biotic

interactions, dispersal distance and the rate of climate change.

J Theor Biol 245:59–65

Calabrese JM, Certain G, Kraan C, Dormann CF (2013) Stacking

species distribution models and adjusting bias by linking them to

macroecological models. Glob Ecol Biogeogr 23(1):99–112

Cao Y, Hawkins CP (2011) The comparability of bioassessments: a

review of conceptual and methodological issues. J N Am

Benthol Soc 30:680–701

Cao Y, DeWalt RE, Robinson JL, Tweddale T, Hinz L, Pessino M

(2013) Using Maxent to model the historic distributions of

stonefly species in Illinois streams: the effects of regularization

and threshold selections. Ecol Model 259:30–39

Chessman BC (2006) Prediction of riverine fish assemblages through

the concept of environmental filters. Mar Freshw Res 57:601–609

Chessman BC, Royal MJ (2004) Bioassessment without reference

sites: use of environmental filters to predict natural assemblages

of river macroinvertebrates. J N Am Benthol Soc 23:599–615

Chessman B, Muschal M, Royal M (2008) Comparing apples with

apples: use of limiting environmental differences to match

reference and stressor-exposure sites for bioassessment of

streams. River Res Appl 24:103–117

Costa GC, Nogueira C, Machado RB, Colli GR (2009) Sampling bias

and the use of ecological niche modeling in conservation

planning: a field evaluation in a biodiversity hotspot. Biodivers

Conserv 19:883–899
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