

INGRAM SCHOOL OF ENGINEERING

Background

The significance of our project lies in designing a robot that enables students to enhance their skills in a swiftly evolving field, fostering an understanding of how these robotics influence safety and productivity in the workplace.

Competitions

First Event: Pull Competition

The robot will pull several weighted blocks down the pull field **Second Event: Sumo Competition** The robot will compete with Group E2.04's robot on the sumo field.

Requirements

Requirement	Product
Max Size: 17 cm X 24 cm	17 cm X 24
Max Weight: 1200 g	1196 g
Budget: \$50	\$49.44
Low Power Shutoff	4.99 V
3 Second Movement Detection	94% Success
Object Push/Pull Weight: 1000 g	Max at 1.2

Significant Changes

- Swapped from Arduino Uno to ESP32 Feather V2
- Enabled dual-core programming on the ESP32 for system optimization
- Replaced delays with timers to process interrupts
- Designed and integrated resistor bank to accommodate for the ESP32
- Developed and implemented new search navigation algorithm
- Implemented adjustable weights

Acknowledgements

- Sponsor: Mr. Fawzi Behmann
- Advisor: Mr. Jeff Stevens

E2.03 - Robo REAPERS

Our autonomous push-pull robot has been built with the specific purpose of maneuvering a tractor sled and overpowering its opponent within the confines of a Dohyo playing field.

Robotics Enabled Autonomous Proactive Encounter Robot Seeker

Hardware Block Diagram

