

**INGRAM SCHOOL OF** ENGINEERING

#### Overview

Our product is an autonomous robot car tasked with locating and transporting plastic eggs using a combination of sensor and camera equipment, a gripper attachment, and a navigation algorithm.

#### Requirements

- Motors controlling each wheel.
- Find and retrieve eggs autonomously
- Detect differently colored plastic eggs.
- Battery power lasts entire competition.
- Gripper able to grab, hold, and release the eggs without breaking them.
- User interface to select desired color.
- Robot has size and weight limitations.
- Budget must not exceed \$40.

### Project Budget & Power

| Part                           | Cost               | <b>Current Draw</b> |
|--------------------------------|--------------------|---------------------|
| ESP32-CAM                      | \$9.18             | 109mA               |
| MPU-6050 Gyroscope             | \$6.49             | 60mA                |
| TCRT5000 Analog IR Sensor (x3) | \$2.40             | 183mA               |
| Bi-Metal Gearbox Motor (x2)    | \$9.00             | 122mA               |
| BSS138 Level Shifter           | \$3.95             | 40mA                |
| Arduino Uno Rev3               | N/A <sup>[1]</sup> | 50mA                |
| HC-SR04 Ultrasonic Module      | N/A <sup>[1]</sup> | 15mA                |
| MG995 Servo Motor              | N/A <sup>[1]</sup> | 170mA               |
| LM2596 Buck Converter          | \$1.50             | 5mA <sup>[2]</sup>  |
| 18650 Batteries (x2)           | \$6.20             | N/A <sup>[3]</sup>  |
| TOTAL                          | \$38.72            | 754mA               |

[1] Part is included with provided kit.

[2] Value is calculated assuming a voltage difference from 8.4V to 5V. [3] Batteries supply a total of 5200mAh, with an estimated total max power operation of 143 minutes.

## Acknowledgements

Faculty Advisor – Mr. Jeffrey Stevens Sponsor – Mr. Fawzi Behmann Texas State University

# E1.10 – Eggstraction Bot

Hunter Chopskie, Jake Helpinstill, Carson Holland, Aaron Luna

#### **Top Level Block Diagram**



#### Navigation Algorithm











#### Meet the Team



### **D1 Accomplishments**

- Closed-loop gyroscope-based positioning.
- Inter-board communication via I2C. Local color detection.
- IR sensing all 3 distinct field values. Motors controlled to avoid boundary from sensor output.
  - Hardware user interface for color selection.
  - Communication of boundary position between Field Detection and Navigation.
  - Functional gripper grabs, holds, and releases eggs without breaking them.

#### D2 Plans

- Mount gripper onto front of the robot. Include level shifter and buck converter for module voltage differences.
- Communicate egg location data to the navigation algorithm.
- Characterize various performance metrics: optimal lighting conditions, maximum egg detection distance, motor angle fidelity.
- Upgrade motors to minimize error. Confirm successful egg captures using a sensor for the gripper.