

INGRAM SCHOOL OF ENGINEERING

Meet the Team

Erich Ellswort (PM) Long Range Communication System

Jaxon Castillo Direction Aware Scream Detection

Tanner Ivey Gyroscopic Suspension System

Aidan McSpadden 3D Lidar Mapping

Project Background

Fire-Bot is a robotic platform designed to assist firefighters locate victims inside of burning buildings. Our project seeks to improve Fire-Bot's capabilities by enhancing its ability to detect people, navigate buildings, and communicate to first responders.

Subsystems

- Long-Range Communication System: Augments Fire-Bot's WiFi based communication with a LoRa-based encrypted link.
- **Direction Aware Scream Detection:** Allow for Fire-Bot to detect direction from a heard scream.
- **Gyroscopic Suspension System:** Automatically control Fire-Bot's active suspension system based on terrain.
- **3D LiDAR Room Mapping:** 3D room mapping and obstacle avoidance.

E1.04 – Fire-Bot

Erich Ellsworth, Aidan McSpadden, Jaxon Castillo, Tanner Ivey

Sponsored by: Dr. Damian Valles, Translational Health Research Center

Block Diagram

Individual Subsystem Showcase

Uses RFM95 LoRa modules. All data is encrypted with ASCON.

Direction Aware Scream Detection

Uses a 4-microphone array to detect screams and localize their position. Used to create graph of sound direction.

Gyroscopic **Suspension System**

Uses a gyroscope and actuators to automatically level the Fire-Bot on uneven terrain.

3D LiDAR Mapping

Unitree 4D L1 RM > Needs to be placed 6" above any other object on Rover

TEXAS STATE

TRANSLATIONAL HEALTH **RESEARCH CENTER**

D1 Accomplishments

Placed all of Fire-Bot's existing software inside of Docker containers.

Detect the location of sounds by using Fire-Bot's microphone array. **Obstacle detection via 3D LiDAR** Control of Fire-Bot's active suspension system via software. Sending and receiving of data via the LoRa-based Long-Range **Communication System.**

Plans for D2

Locate the direction of screams via Fire-Bot's existing scream detection system. Room mapping with Fire-Bot's 3D LiDAR system. Automated suspension control to improve Fire-Bot's ability to navigate uneven terrain. Integration of subsystems with the Long-Range Communication System.

Acknowledgements

Sponsor: The Translational Health Research Center. Sponsor & Advisor: Dr. Damian Valles D2 Mentor Team: James Strong, Chadd Mingarine and Jacob Mitchell