

INGRAM SCHOOL OF ENGINEERING

Problem Summary

Angleton North Side WWTP Contributing Area

Due to Houston's expanding metropolitan area, the City of Angleton expects major growth in a mapped-out area north of the city over the next 40/50 years, necessitating a new wastewater treatment plant.

Standards & Guidelines

- TCEQ Chapter 217 (Design Criteria)
- TCEQ Chapter 309 (Effluent limitations)
- TCEQ Chapter 312 (Sludge Use, **Disposal and Transportation**)
- TCEQ Chapter 290 (Public Water Systems)
- Fundamentals of Hydraulic Engineering Systems 5th Ed. (Houghtalen, Akan, Hwang)

C2-06: City of Angleton Wastewater Treatment Plant

Caden Smith, Shawn Jasso, Jordon Gallego

Sponsored by: HDR Inc. - Todd Warrix

- **Population Modeling and Forecasting.**
- Design of AGS reactors that have superior treatment efficiency,
- compact design, and lower energy consumption. • Gravity Sewer Main vs. Force Main.
- Site Security & Layout.

Future Expansion

1st Phase: Starting @ 500,000 GPD with one AGS reactor fully running with a back-up. **2nd Phase:** Back-up reactor fully running with flow ranging from 1-1.5 MGPD. **<u>3rd Phase:</u>** Introduces Chlorine & Purple Pipe System. 50 yr. Future: Room to accommodate additional reactors and odor control assets once surrounding area is further developed.

Aerobic Granular Sludge

System Features and Advantages

Optimal biological treatment is accomplished in one effective aeration step Settling properties at SVI values of 30-50 mL/g allow MLSS concentrations of 8,000 mg/l or greater

- 25% of the footprint compared to conventional activated sludge systems Energy savings up to 50% compared to activated sludge processes
- No secondary clarifiers, selectors, separate compartments, or return sludge pumping stations
- Proven enhanced nutrient removal (ENR)
- Robust structure of granule withstands fluctuations in chemical spikes, load, salt, pH and toxic shocks

Typical Applications

- Retrofit of existing tanks to increase treatment capacity Upgrade of existing treatment systems to meet BNR requirements
- Municipal and industr

- Significant reduction of chemicals for nutrient removal due to the layered structure and biopolymer backbone of the granule
- Ease of operation with fully automated controls Lowest life-cycle cost

Cost & Sustainability

Cost Analysis

Equipment Median Cost in TX (2022)		
Bar Screens	\$	37,800
Vortex Grit Removal	\$	108,000
Lift Station	\$	481,250
Screw Pumps	\$	75,600
AquaNereda Equipment	\$	2,469,560
Aquadisk Filters	\$	306,680
Sludge Thickener	\$	135,000
Sludge Digestor	\$	540,000
Trojan 3000 UV	\$	207,000
Chlorine Disinfectant	\$	81,000
Administrative Buildings	\$	500,000
Contingency (+/- 20%)	\$	989,000
Total ADJ. 2024	\$	6,361,000

Envision Sustainability Rating

