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Abstract 10 

The diversity of vertebrate skeletons is often attributed to adaptations to distinct ecological 11 

factors such as diet, locomotion, and sensory environment. Although the adaptive evolution of 12 

cranial, appendicular, and vertebral skeletal systems is well studied in vertebrates, 13 

comprehensive investigations of all skeletal components simultaneously are rarely performed. 14 

Consequently, we know little of how modes of evolution differ among skeletal components. 15 

Here, we tested if ecological and phylogenetic effects led to distinct modes of evolution among 16 

the cranial, appendicular, and vertebral regions in extant carnivoran skeletons. Using multivariate 17 

evolutionary models, we found mosaic evolution in which only the mandible, hindlimb, and 18 

posterior region of the vertebral column showed evidence of adaptation towards ecological 19 

regimes whereas the remaining skeletal components reflect clade-specific evolutionary shifts. 20 

We hypothesize that the decoupled evolution of individual skeletal components may have led to 21 

the origination of distinct adaptive zones and morphologies among extant carnivoran families 22 

that reflect phylogenetic hierarchies. Overall, our work highlights the importance of examining 23 
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multiple skeletal components simultaneously in ecomorphological analyses. Ongoing work 24 

integrating the fossil and paleoenvironmental record will further clarify deep-time drivers that 25 

govern carnivoran diversity we see today and reveal the complexity of evolutionary processes in 26 

multicomponent systems.  27 

 28 

Key words: adaptive landscape; Carnivora; ecomorphology; macroevolution; Ornstein-29 

Uhlenbeck modeling; phylogenetic comparative methods 30 

 31 

Introduction 32 

The diversity of animal forms is one of the most salient patterns across the tree of life. In 33 

mammals, morphological innovations in the cranial, appendicular, and axial skeletal systems 34 

facilitate the incredible diversity found today, ranging from bats with winged forelimbs to the 35 

biggest animals to have ever lived on earth. Many researchers have examined how variation in 36 

the skull [1–6], limbs [7–10], or vertebrae [11–15] serve as crucial adaptations to their evolution. 37 

These skeletal systems are traditionally examined independently and are rarely investigated 38 

simultaneously even though these anatomical regions comprise a single, functionally integrated 39 

system to support movement, sensation, and other life functions. When considered wholistically, 40 

the observed variation across the different components of organismal anatomy is generally 41 

explained by multitudinous factors, some that are potentially incongruous [16–18]. While this 42 

evolutionary push-and-pull between anatomical regions may characterize the process of 43 

evolution, the hypothesis can only be tested when the different skeletal components are explored 44 

simultaneously rather than piecemeal. Simultaneous investigation of integrated components is 45 

critical to our understanding of the role of developmental and/or functional integration in 46 
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canalizing macroevolutionary trajectories [19–21]. Here, we use carnivorans to investigate how 47 

ecological and phylogenetic factors correspond to evolutionary changes in the cranial, 48 

appendicular, and axial skeletal systems. Carnivorans (bears, cats, dogs, seals, and their relatives) 49 

are a productive model system to examine skeletal evolution because of their high species 50 

richness and vast distribution across most biomes in all continents and oceans, along with broad 51 

ecological diversity in locomotor traits and feeding adaptations. 52 

Components of carnivoran skeletal systems are well studied individually. In the skull, 53 

craniomandibular diversity is influenced by several ecological factors and phylogeny [22–26]. 54 

The skull exhibits decoupled evolutionary modes: cranial shape follows clade-specific 55 

evolutionary shifts, whereas mandibular shape evolution is linked to broad dietary regimes 56 

[6,27]. In the appendicular skeleton, ecomorphological divergence exists between the hindlimbs, 57 

which are adapted primarily for locomotion, and the forelimb, which are adapted for multiple 58 

functions ranging from running to grappling prey to manipulating objects [28–31]. Additionally, 59 

more recent work using phylogenetic comparative methods found that scaling and phylogeny 60 

exhibit stronger effects on limb evolution than do ecological parameters [32–34]. In contrast to 61 

craniomandibular and appendicular ecomorphology, research on the axial skeleton is in nascent 62 

stages. Initial research indicates that distinct regions of the vertebral column are under different 63 

evolutionary pressures. The anterior region exhibits low disparity due to phylogenetic constraints 64 

or ecological conservatism, whereas the posterior region exhibits higher disparity that may be 65 

due to adaptations to various locomotor ecologies [12,35]. In contrast to these morphologically-66 

localized studies, analyses of the evolution of whole-body traits like body mass, skeletal size, 67 

and body shape often follow a Brownian motion model or clade-based shift model rather than 68 

being associated with ecological regimes [26,36,37]. 69 
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Compared to skeletal system-specific findings, simultaneous investigation of skulls, 70 

limbs, vertebrae, and overall body plan are rarely conducted, likely because of the enormous 71 

amount of data that would need to be collected and the complexity of the multivariate analyses 72 

required. However, a more comprehensive approach to quantifying skeletal evolution is essential 73 

to elucidate its complexity more fully. The search for system-level trends and variations is 74 

further obscured by the disparate methods employed to test the effects of ecology and phylogeny 75 

on different skeletal systems by different researchers. In this study, we address both issues in our 76 

investigation of the mosaic evolution of carnivoran skeletons by creating a new phenomic dataset 77 

that encompasses all major components of the skeletal system and using a unified set of 78 

multivariate evolutionary models to test the ecological and phylogenetic effects influencing the 79 

modes of evolution of these skeletal components.  80 

 81 

Methods 82 

Skeletal and ecological traits 83 

We collected 103 linear measurements to capture the skeletal morphology of 119 84 

carnivoran species (208 osteological specimens; Fig. S1; Table S1). This dataset includes seven 85 

cranial traits, seven mandibular traits, 13 forelimb traits, 13 hindlimb traits, and seven traits in 86 

third cervical, fifth cervical, first thoracic, middle thoracic, diaphragmatic thoracic, last thoracic, 87 

first lumbar, middle lumbar, and last lumbar vertebrae. Because carnivorans exhibit differing 88 

degrees of sexual dimorphism [38,39], we use only male specimens. To remove size effects, we 89 

calculated log shape ratios by dividing each skeletal trait by the geometric mean of all 103 traits 90 

[40,41]. We then used principal component analyses (PCAs) to reduce the dimension of each 91 

skeletal component (i.e., cranium, mandible, forelimb, hindlimb, and each of the nine vertebrae) 92 
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and retained a number of PC axes that corresponded to >90% of the explained variance. We also 93 

conducted a PCA on the entire dataset as our proxy of the whole-skeleton phenome and retained 94 

the first six PC axes (~75% of explained variance) for subsequent analyses. We classified the 95 

119 carnivoran species into distinct locomotor modes, hunting behaviors, and dietary regimes 96 

following [37]. 97 

 98 

Phylogenetic comparative methods 99 

We tested whether each skeletal component evolved as adaptation to specific ecological 100 

regimes or exhibited clade-specific evolutionary shifts by fitting multivariate evolutionary 101 

models on the retained PC axes of each skeletal component [42–44]. For the adaptive ecological 102 

models, we fit three multivariate multi-optima Ornstein-Uhlenbeck models (i.e., mvOUMdiet, 103 

mvOUMhunting, and mvOUMlocomotion) to test if dietary, hunting behavioral, or locomotor regimes 104 

influenced the evolution of each skeletal component using mvMORPH [44]. The models were fit 105 

across 500 stochastically mapped trees to account for uncertainty in phylogenetic topology and 106 

ancestral character states (see electronic supplementary materials). We also calculated the 107 

phylogenetic half-lives of the best supported adaptive ecological model [42]. A short 108 

phylogenetic half-life relative to the age of Carnivora (48.2 myr) would suggest that skeletal 109 

traits are strongly pulled toward distinct ecological optima across the adaptive landscape. For the 110 

clade-based model, we fit a multi-optima OU model (mvOUMphyloEM) without a priori ecological 111 

regimes with PhylogeneticEM [45]. We also fit a single-rate multivariate Brownian motion 112 

model (mvBM1) and a single-optimum OU model (mvOU1). We assessed the relative support of 113 

models using small sample-corrected Akaike weights (AICcW). Lastly, we assessed the 114 

covariation among skeletal components using partial least squares with geomorph [46]. 115 
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Preliminary results revealed that phenotypic differences between pinnipeds (i.e., seals 116 

and sea lions) and terrestrial carnivorans are often the greatest source of variation for most 117 

skeletal components. These results are unsurprising considering pinnipeds exhibit derived 118 

morphologies that enable them to be fully aquatic. Therefore, we repeated our analyses using a 119 

reduced dataset with no pinnipeds. Results of the full dataset with pinnipeds are presented in the 120 

electronic supplementary material.  121 

 122 

Results and Discussion 123 

We found mosaic evolution of the carnivoran skeleton in which ecology and phylogeny 124 

have differing influences on the evolutionary mode of the various skeletal components. 125 

Consistent with [6,27], the cranium and mandible exhibited decoupled evolutionary modes. In 126 

the cranium, the clade-specific shift model exhibited overwhelmingly greater support 127 

(mvOUMphyloEM; AICcW>0.99) compared to adaptive ecological models (Fig. 1; Table S2). We 128 

found eight evolutionary shifts in cranial morphology that correspond to carnivoran clades (Fig. 129 

2A). In contrast, the adaptive dietary model was the best supported model (mvOUMdiet; 130 

AICcW=0.96) for the mandible with a short phylogenetic half-life of 2.52 myr (Fig. 1; Fig. S2B; 131 

Table S2; see Supplementary Results for optima distribution in phylomorphospace). These 132 

results are congruent with findings revealing that mandibular shape is evolutionarily labile with 133 

respect to dietary evolution whereas cranial shape is partitioned among families rather than 134 

among dietary groups [6]. Despite their covariation (r = 0.73; Table S3), decoupled evolutionary 135 

modes between the cranium and mandible may be explained by their functions. Diet is often 136 

found to have had a strong influence on mandibular evolution because of its direct role in feeding 137 

[3,47–51]. In contrast, the cranium has multiple sensory functions in addition to feeding that 138 
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influence its evolution [52–54], and therefore, the signal from dietary adaptations in its 139 

morphology may be obscured.  140 

The appendicular system exhibited decoupled evolutionary modes between forelimbs and 141 

hindlimbs. The forelimb was best supported by the mvOUMphyloEM model (AICcW>0.99; Fig. 1; 142 

Table S2). Seven shifts in forelimb evolution occur primarily along familial branches (Fig. 2B), 143 

indicating that the complexity and variation of carnivoran forelimb morphology cannot be 144 

captured effectively by dietary, hunting behavioral, or locomotor categories. Instead, these shifts 145 

suggest that clade-specific adaptations enabled the diversity of forelimb skeletons for tasks such 146 

as grappling or manipulating prey, swimming, or digging [28–31,34,55,56]. For example, most 147 

felids use their prehensile forelimbs to ambush and subdue prey, most canids and hyaenids 148 

pounce and pursue prey, and some mustelids use their powerful forelimbs to dig out prey while 149 

other more derived mustelids (i.e., weasels) pursue prey in tight crevices and burrows [57]. In 150 

contrast, the hindlimb was best supported by the mvOUMlocomotion model (AICcW=0.83) in the 151 

hindlimb with a short phylogenetic half-life of 5.05 myr (Fig. 1; Table S2), supporting 152 

hypotheses that the hindlimb is adapted primarily for locomotion as typically found in 153 

quadrupedal mammals [58]. Although the forelimb and hindlimb covaries (r = 0.87; Table S3), 154 

previous work found that this integration is weaker than expected in carnivorans that do not 155 

specialize in cursoriality [34]. This work together supports the hypothesis of functional 156 

divergence between the forelimbs and hindlimbs of carnivorans. 157 

The axial skeleton exhibits distinct evolutionary modes between the anterior and 158 

posterior regions of the vertebral column: cervical and most thoracic vertebrae tended to be best 159 

supported by clade-specific shift or single-peak OU models, whereas the last thoracic and all 160 

lumbar vertebrae were best supported by mvOUMhunting or mvOUMlocomotion models (Fig. 1; Fig. 161 
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2C–F; Table S2). Our findings strengthen the coalescing hypothesis that anterior vertebrae 162 

exhibit lower disparity, higher evolutionary constraints, and more subtle adaptations to 163 

locomotion whereas posterior vertebrae exhibit the opposite patterns in carnivorans [35] and 164 

broadly across mammals [13]. We posit that high evolutionary constraints of the anterior 165 

vertebrae are associated with clade-specific shifts in the cervical and most thoracic vertebrae. 166 

Importantly, subtle adaptations in these anterior vertebrae could be masked by many-to-one or 167 

one-to-many mappings, making it difficult to uncover the form-function associations with 168 

evolutionary models [59]. In contrast, relaxed evolutionary constraints of the posterior vertebrae 169 

facilitate the evolution of disparate lumbar vertebrae across the entire carnivoran order. These 170 

disparate vertebrae adapt to diverse locomotor modes or hunting behaviors based on the mobility 171 

of the posterior backbone and irrespective of clade origins. The short phylogenetic half-lives 172 

(1.47–5.12 myr) further suggests strong pulls towards these different adaptive optima. More 173 

broadly, this increased mobility of the lumbar region over evolutionary time is hypothesized to 174 

be an innovation characterizing crown mammals [13,60,61]. Correspondingly, the posterior 175 

vertebrae are tightly integrated (r = 0.84–0.96; Table S3).  176 

Lastly, we found that the clade-specific shift model (mvOUMphyloEM; AICcW > 0.99) best 177 

described the overall skeletal phenome (Table S2), a pattern that is consistent with previous 178 

investigations of whole-body proxies such as body size and body shape [26,36,37]. The 179 

mammalian body plan is comprised of cranial, axial, and appendicular components; therefore, its 180 

multidimensionality transcends one-to-one mapping relationships between morphology and 181 

ecological function. Instead, individual skeletal components within distinct body plans can adapt 182 

to specific ecological factors independently from each other, enabling species with distinct body 183 

plans to exhibit similar ecological or functional regimes and vice versa.  184 
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Overall, we elucidate the mosaic evolution of the carnivoran skeleton, finding that 185 

different skeletal components exhibit distinct modes of evolution. Our results suggest that 186 

different methodologies and taxonomic samples do not necessarily explain previously reported 187 

region-specific macroevolutionary patterns; rather, complexity in explanatory factors of skeletal 188 

diversity is a key feature of Carnivora. The ability of individual skeletal components to adapt to 189 

specific ecological factors independently from each other may have contributed to the clade’s 190 

hierarchical [62,63] evolution. As previously hypothesized [26,36], the restriction of carnassial 191 

shear to the P4/m1 pair may have been the key innovation that facilitated the initial carnivoran 192 

diversification early in the clade’s evolutionary history. Subsequent evolution led to the 193 

continual partitioning between clades, resulting in the origination of extant carnivoran families as 194 

discrete phylogenetic clusters that occupy different adaptive zones [64] with distinct 195 

morphologies including body size and shape [37,65] and various components of the skeleton 196 

([6]; Fig. 2). Within-clade variation then arises to reflect resource partitioning among 197 

ecologically similar taxa, leading to adaptations in morphologies such as the mandible, hindlimb, 198 

and posterior region of the vertebral column (Fig. 1). These traits were strongly pulled toward 199 

distinct ecological peaks across the adaptive landscape as revealed by their short phylogenetic 200 

half-lives (1.47–5.12 myr) relative to the clade’s age (48.2 myr).  201 

Our research statistically revealed the mosaic evolution of carnivoran skeletons. These 202 

distinct evolutionary modes demonstrate the importance of examining multiple skeletal 203 

components in ecomorphological analyses. Nevertheless, key questions remain: What spurred 204 

the evolutionary transitions towards the evolutionary shifts or adaptations of the various skeletal 205 

components? When in the 55 million years of carnivoran evolutionary history did these 206 

evolutionary events occur? And what developmental and genetic phenomena underlie the 207 
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evolutionary dissociation of various skeletal elements? Ongoing work integrating the fossil and 208 

paleoenvironmental record will further elucidate the carnivoran diversity we see today and reveal 209 

the complexity of evolutionary processes in multicomponent systems.  210 

 211 

Acknowledgements 212 

We are grateful to the staff and collections at the American Museum of Natural History, 213 

California Academy of Sciences, Field Museum of Natural History, Natural History Museum of 214 

Los Angeles County, Museum of Vertebrate Zoology, Natural History Museum London, San 215 

Diego Natural History Museum, Texas Vertebrate Paleontology Collection, National Museum of 216 

Natural History, and Burke Museum of Natural History and Culture. 217 

 218 

Funding 219 

Funding was supported by the National Science Foundation (DBI–2128146), a University of 220 

Texas Early Career Provost Fellowship and Stengl-Wyer Endowment Grant (SWG-22-02) to 221 

CJL, and the European Research Council (Tied2Teeth, grant agreement n° 101054659) to LJH. 222 

  223 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 9, 2023. ; https://doi.org/10.1101/2023.09.03.556127doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.03.556127
http://creativecommons.org/licenses/by-nc-nd/4.0/


224 

Fig. 1. Diagram of the skeletal components and their best-fitting evolutionary model on Lontra 225 

canadensis. AICcW are in parentheses. See Table S2 for full AICc table. diaT = diaphragmatic 226 

thoracic vertebrae 227 
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228 

Fig. 2. Clade-specific evolutionary shifts in skeletal components across terrestrial carnivorans 229 

identified by PhylogeneticEM. Shifts are represented as pink circles, and branches on the 230 

phylogenies are colored according to each regime. 231 

   232 

 233 
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