

The rising STAR of Texas $_{\text{\tiny TM}}$

^{*}Advanced Composites Laboratory (IGRM 1308)

PI: Dr. Jitendra S. Tate

Email: JT31@txstate.edu

https://composites.engineering.txst.edu/

Gradaute Researchers:

- Arigbabowo Oluwalsola PhD in MSEC program
- Rahul Sheley PhD in MSEC program
- Mandesh Khadka MS in MME Program
- Kiran Poudel MS in MME Program
- Pratik Karkhanis MS in MME Program
- Mohamd Sufian MS in MME Program
- Esmer Trevino (C-Fan) MS in MME Program
- Kyle Johnson (TRI Austin) MS in MME Program

Jitendra S. Tate

Professor, Manufacturing Engineering

Education:

- PhD Mechanical Engineering (Mechanics & Materials), 2004.
 North Carolina A &T State University
- MS Mechanical Design Engineering, 1996
 University of Pune, India
- BS Mechanical Engineering, 1990
 University of Pune, India

Awards:

- Composite Educator of the Year: 2009 and 2020
 Society of Plastics Engineering
- Presidential Award for Excellence in Teaching: 2018
 Texas State University
- Presidential Award for Excellence in Service: 2020 Texas State University

Weblinks:

- Faculty Profile: <u>https://faculty.txstate.edu/profile/1922481</u>
- Advanced Composites Lab: <u>http://composites.engineering.txstate.edu</u>

- □ Thermal Protection Systems-TPS e.g. rocket ablatives,
- □ Fire-retardant interior structures of mass transit and aircraft,
- □ Lighter and damage-tolerant wind turbine blades,
- □ Conductive/magnetic/high temperature composites for 3D printing,
- Bio-based composites using natural fibers (kenaf, ragweed, hemp, agricultural waste)
- Characterization and progressive failure analysis of polymers, elastomers, and composites under mechanical loading (static, fatigue, and impact); thermal loading; FST (fire, smoke and toxicity); and ablation
- Fatigue of composites Life prediction modeling and damage mechanisms
- □ Low velocity and ballistic impact on composites
- □ Environmental, health and safety aspects of nanotechnology safety

Research

- Development, manufacturing, and characterization of high-performance thermoset and thermoplastics polymeric matrix composites for industrial, aerospace, sports, biomedical, and energy applications such as,
 - □ Thermal Protection Systems-TPS e.g. rocket ablatives,
 - □ Fire-retardant interior structures of mass transit and aircraft,
 - □ Lighter and damage-tolerant wind turbine blades,
 - □ Conductive/magnetic/high-temperature composites for 3D printing,
 - Bio-based composites using natural fibers (kenaf, ragweed, hemp, agricultural waste)
- Characterization and progressive failure analysis of polymers, elastomers, and composites under mechanical loading (static, fatigue, and impact); thermal loading; FST (fire, smoke and toxicity); and ablation
- □ Fatigue of composites Life prediction modeling and damage mechanisms
- □ Low velocity and ballistic impact on composites damage mechanism
- □ Low-cost Manufacturing of polymeric composites
- □ Evaluation of Dispersion of Nanoparticles in Thermoset and Thermoplastics
- □ Environmental, health and safety aspects of nanotechnology safety

Research Capabilities

- Mechanical characterization of composites
 - Static; Fatigue, Low Velocity Impact loading, and Ballistic Impact Loading
 - Fatigue life prediction modeling
 - Damage mechanisms in composites under Impact Loading
- Thermal characterization of nanoparticle-modified polymers
 - Thermogravimetric analysis (TGA) to determine the effect of nanoparticles on the thermal stability of polymers
 - Differential Scanning Calorimetry (DSC) to determine the effect of nanoparticles on the crystallinity of polymers
 - Thermo Mechanical Analyzer (TMA) to the evaluate linear coefficient of thermal expansion
- Microscopy Characterization of nanocomposites with support from ARSC
 - Optical microscopy studies to determine the extent of damage.
 - Transmission electron microscopy (TEM) to evaluate dispersion state.
 - Scanning electron microscopy (SEM) to evaluate the damage after testing.
- Nondestructive testing of composites after testing
 - Infrared thermography

Materials

- Reinforcements: Carbon (PAN and Rayon based), E-glass, Silica, Hemp, Ragweed, and Coconut Coir
- **Thermosets:** Polyester, Vinyl ester, Epoxy, Cyanate ester, Polyurethane, Polysiloxanes, Phenolic (water and IPA based)
- Thermoplastics: PA 6, PA 11, PA 12, PA 46, PLA, TPU
- Nanoobjects: MWCNT, CNF, ANF, HNT, NGP, Nanosilica
- Micron size particles: Strontium Ferrite, Core Rubber Shell

Equipment

Dispersion equipment for nanoparticle into thermoset and thermoplastic polymers

250

The rising STAR of Texas

THREE ROLL MILL (CALENDARING APPROACH)

CENTRIFUGAL PLANETARY MIXER

COROTATING TWIN SCREW EXTRUDER

SINGLE SCREW EXTRUDER

HIGH SHEAR MIXER

DISPERSION TECHNIQUES...

Selection of suitable dispersion technique enables maintaining nanofiller characteristics and yields desired results

	Ultrasonication		Stand Mixor	Planetary	High Shear	Three Poll Mill
	Bath Type	Horn Type		Centrifugal Mixer	Mixer	
Energy Imparted	low	High	Low	Low to Moderate	High	High
Fracture	Low	High	Low	Low	High	Low
Debundling	Low	High	Low	Low to moderate	High	High
Air bubble entrainment	Low	High	High	Low	High	Moderate
Scale-up	Not feasible	Not feasible	Not feasible	Not feasible	Feasible	Feasible

The rising STAR of Texas $_{\text{TM}}$

Equipment

Manufacturing equipment for thermoset and thermoplastic nanocomposites

**Advanced Composites Laboratory is equipped with a specialized nanocontainment room for safe storage and safe handling of nanoparticles

Harish Kallagunta

Equipment

Mechanical characterization equipment for thermoset and thermoplastic nanocomposites

The rising STAR of Texas

MTS SERVO HYDRAULIC TESTING EQUIPMENT Max Load: 100kN

TOWER IMPACT TESTER

Max. Energy: 405J

@ [AUTWORIZED PERSONNEL ORLY

UTS ELECTRO-MECHANICAL TESTING EQUIPMENT Max Load: 50 kN

MTS EXCEED E45 Max Load: 1kN – 10kN

Equipment

Thermal characterization equipment for thermoset and thermoplastic nanocomposites

The rising STAR of Texas $_{\text{TM}}$

DISCOVERY 650 SIMULTANEOUS DSC TGA Max. Temperature: 1500 C

TMA Q400 Temp. Range: -150C to 1000C Force Range: 0.001 to 2N

Application Oriented Innovative Composites Materials Development

Ablative composites for aerospace applications

Fatigue Resistant Composites

13

- Composites are subjected to constant cyclic loads.
- Addition of CSRP, CTBN micro-nano fillers to enhance fatigue life.
- Development of stiffness degradation model which can predict the life of composites under fatigue loading.

230

The rising STAR of Texas

Impact Damage Resistant Composites

- Impact damage can be due to debris, hail, projectile hits etc.
- Addition of alumina nanofibers to further enhance damage absorption.
- Development of a predictive model to estimate maximum energy absorption from static tests.

14

MANUFACTURING...

Double drip resin bath containing resin

E-Glass fabric being pulled through the resin bath

Number of layers :

6 layers for static tests 14 layers for LVI and Ballistic Impact. <u>Area of laminate</u>:

14in x 14 in

14

in

Thermal Imaging Results

Impact from height 914 mm

Impact from height 508 mm

12/11/2023

All rights reserved. Copyright of Harish Kallagunta

BALLISTIC IMPACT

Qualification of developed composite against ballistic velocity threat of UL-752, Level 1 and Level 6

Rating	Ammunition	Weight (in grains)	Velocity range (min – max m/s)	
Level 1	9 mm FMJ with lead core	124	358 m/s – 394 m/s	
Level 2	.357 Magnum JSP	158	381 m/s – 419 m/s	
Level 3	0.44 Magnum SWGC	240	411 m/s – 452 m/s	
Level 4	0.30 Caliber rifle LCSP	180	774 m/s – 851 m/s	
Level 5	7.62 mm rifle	150	838 m/s – 922 m/s	
Level 6	9 mm FMJ with lead core	124	426 m/s – 469 m/s	
Level 7	5.56 mm rifle FMJ military ball	55	938 m/s – 1031 m/s	
Level 8	7.62 mm rifle FMJ military ball	150	838 m/s- 922 m/s	

Ballistic Impact Testing...

Property	Sample Dimensions	Control	UT-Composite	VT-Composite
Ballistic Impact	6in x 4in x 't' 152.4mm x 101.6 mm x 't'	4	16	16

Thermoplastic nanocomposites for ESD application which are 3D printable

- ESD is of major concern in aerospace, automotive, oil and gas, electronics industry to name a few. Estimated \$40 billion losses due to ESD damage in electronics industry alone.
- Use of conductive nanofillers such as NGP, CNF, CNT to increase conductivity without sacrificing the mechanical properties.
- Thermoplastics possessing excellent multifunctional properties with potential application in these applications include: PA6, PA11, PA12, PA645, PA66, PLA, PETG etc.

SUSTAINABLE FIBERS DERIVED FROM CELLULOSE FOR USE IN POLYMER COMPOSITE MATERIALS

- Cellulosic materials with responsible research, development and thoughtful deployment can become the choice for sustainable materials.
- Cellulose nanomaterials are widely useful in automotive, medical, cosmetics, electronics etc., in the form of nanocrystals or nanofibers.
- The key critical pathway for progressing research is to apply the benefits of nanotechnology and manufacturing technologies to exploit the unique features for superior and controllable composite performance.

Development of Thermoplastics and Thermosets Composites for Additive Manufacturing

Development of Bonded Magnetic Composite for Magnetic Field Assisted Additive Manufacturing

Motivation

- More economical than sintered magnets
- Superior mechanical properties and corrosion resistance
- Ability to develop intricate and complex 2D and 3D magnetic devices
- Materials
 - **Fillers/Reinforcement:** SrFe₁₂O₁₉ magnetic powders
 - **Binders/Matrix:** Polyamide 12, Polyamide 4.6 (high-temperature capability)

Spooler Filament diameter Indicator Temperature zones Matrix hopper Image: Construction of the constru

22 **Twin Screw Extrusion Technology**

Modified Fused Filament Fabrication-FFF

THANK YOU