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1 | INTRODUCTION
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Abstract

Models can be powerful tools to help scientists, policymakers, and practitioners fore-
cast vegetation dynamics and inform management decisions in a variety of ecosys-
tems. In coastal environments, vegetation moderates physical and hydrodynamic
processes that conversely affect vegetation dynamics. Coastal management and the
implementation of nature-based solutions in the coastal environment requires
models that can predict vegetation dynamics that are driven by ecological processes
as well as physical processes (e.g., storms, sea level rise). To determine models that
are capable of simulating biomass dynamics and assess their ability to make predic-
tions within the context of climate change and environmental management, we
reviewed coastal dynamic vegetation simulation models across the following coastal
zone habitats: tidal wetlands (salt marsh, mangroves, and freshwater wetlands),
seagrass beds, coastal forests (maritime and floodplain forests), and dune habitats.
Fifty-four models met the review criteria and were examined to assess their ability to
simulate relevant ecological processes and the spatiotemporal scales at which they
are applied. These models included a variety of exogenous and endogenous pro-
cesses and integrate complex ecogeomorphological feedbacks affecting plant and soil
community, hydrodynamic, and sediment transport dynamics. Most models reviewed
utilized implicit approaches to predicting vegetation biomass and simulated a limited
number of processes based on the principal drivers of habitat of interest. Key gaps
identified were the exclusion of below-ground biomass dynamics, limited inclusion of
processes such as competition, facilitation, and succession, and the inability to simu-
late management actions. Future models should seek to move towards process-
based approaches where appropriate to enable their application to different systems

and facilitate their use under novel environmental conditions.

KEYWORDS
coastal habitats, coastal models, ecological models, ecosystem processes, hydrodynamics,
integrated modeling, simulation

conditions or consideration of the effects of management actions.

There is a critical need to evaluate existing vegetation models and

Vegetation is often the foundation of ecological systems and the
focus of many habitat dynamics models used for forecasting and man-
agement (Reichert et al., 2015; Riddick et al., 2017). However, not all
vegetation models support forecasting under non-stationary

synthesize commonalities and gaps amongst them to determine the
direction for the development of next generation vegetation models
that are capable of high accuracy predictions under changing
conditions. Vegetation models vary broadly in intent (i.e., simulative
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vs. theoretical), resolution and domain (i.e., cell, organ, organ system,
plant, patch, local, regional, global; Figure 1) and inclusion and exclu-
sion of processes and stressors (i.e., acute vs. chronic and exogenous
vs. endogenous; Figure 2) (Best et al., 2008; Franklin et al., 2020;
Scheiter et al., 2013). The simulated processes often determine model
temporal scale - decadal to millennial, for global-scale processes

Regional

Global

(e.g., carbon storage), seasonal to multi-year for plant-scale processes
(e.g., biomass production or fruiting), or minutes to hours for cellular
or organ system processes (e.g., stomatal opening or root nutrient
uptake) (Moorcroft et al., 2001; Peng, 2000; Riddick et al., 2017,
Stallins, 2012; Walker et al., 2017; Zinnert et al., 2017). Similarly,
model spatial scale is often a function of model type. Vegetation

Seagrass Bed

FIGURE 1 Coastal zone habitats and spatial scale. Coastal zone habitats are often directly and indirectly linked based on their proximity and
similar acute episodic and chronic physical stressors. These habitats occur concomitantly in the broader coastal zone. The spatial scale at which
models apply to these habitats can vary from the plant, patch, local, regional, and global level.
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FIGURE 2 Endogenous biotic (green) and exogenous abiotic (blue) processes and stressors associated with ecogeomorphic coastal
ecosystems across the spatiotemporal spectrum. Cellular, leaf, canopy, organ system, and plant-scale processes are distilled and lumped together
in this diagram. Vegetation patch and community dynamics processes are similarly lumped. Note that exogenous biological processes such as

herbivory may also be relevant but are not included in this figure.
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dynamics models (i.e., those that simulate changes in vegetation char-
acteristics over time, such as biomass, structure, cover, among others)
typically represent smaller scales whereas dynamic global vegetation
and terrestrial biosphere models intend to represent global scale pro-
cesses linked to global water, carbon, or nutrient cycling dynamics, for
example (Fisher et al., 2014).

Vegetation dynamics models are often simplified by excluding
processes irrelevant to the scale or intent of the questions being
asked; in addition, more complex processes might not be included due
to computational requirements of executing model runs (Fagherazzi
et al., 2020; Wiberg et al., 2020). While these simplifying assumptions
are necessary in many cases, models can be constricted to a relatively
small domain over which the model equations are applicable. For
example, environmental change resulting from climatic shifts or urban-
ization may lead to changes in exogenous processes where the model
no longer applies. Functional predictive vegetation models that can
simulate the effects of such changes are necessary to understand how
system changes due to climate and other anthropogenic changes may
affect vegetation processes and distribution.

Although climate change-driven effects on vegetation occur at
global scales, some habitats are predicted to be disproportionately
affected (IPCC, 2019). For this reason, models operating at smaller
regional and local spatial scales are often necessary to inform practical
ecosystem planning and management and have been developed for a
broad range of ecological systems from tropical forests to tundra
(Franklin et al., 2020; Reichert et al., 2015; Riddick et al., 2017). This
review focuses on coastal vegetation models because coastal systems
are highly dynamic and are expected to undergo rapid change in the
next decades due to climate change, which is predicted to alter the
invaluable ecosystem services they provide (Elko et al., 2019; Hanley
et al., 2020; IPCC, 2019). In recent decades, there has been a para-
digm shift towards more nature-based solutions for coastal flood risk
management and to facilitate coastal adaptation to rising sea levels
(Bridges et al., 2021; Jackson & Nordstrom, 2019; Powell et al., 2019)
requiring predictive vegetation models that can simulate the evolution
of these coastal ecological systems under changing conditions
(Jackson & Nordstrom, 2019; Roelvink & Renier, 2012; Walker
et al., 2017).

The coastal zone is defined as the region of a coast directly
influenced by marine hydrodynamic processes, both onshore and off-
shore (Bridges et al., 2021; USACE, 1995). It encompasses wetlands,
seagrass beds, and dune complexes among other habitats, which all
maintain a strong and inextricable ecogeomorphological link between
biological and geological processes (Corenblit et al., 2015; Viles, 2020;
Zinnert et al., 2017). Vegetation impacts physical and hydrodynamic
processes and these in turn impact vegetation dynamics and pro-
cesses. Coastal ecogeomorphic habitats share many of the same natu-
ral and anthropogenic threats (Hanley et al., 2020) and disturbance
responses can directly and indirectly impact surrounding upland and
coastal zone habitats and infrastructure (Zinnert et al., 2017;
Figure 1). Plants here act as ecosystem engineers with functional simi-
larities across habitats such that a unifying or universal theoretical,
modeling, and managing framework has been suggested across eco-
systems (Corenblit et al, 2015). However, similar to other eco-
geomorphic systems, many coastal system models focus mainly on
exogenous physical processes while simplifying the endogenous vege-

tation processes at work as opposed to vegetation models developed

for agricultural, silvicultural, or natural systems that simulate endoge-
nous vegetation processes using simplified exogenous physical drivers
(Figure 2; Larsen et al., 2020).

The objective of this study is to review existing vegetation
models of coastal zone habitats for the following purposes: to deter-
mine their ability to simulate biomass dynamics; to identify common-
alities and gaps among the models in terms of scale, processes
included, and inputs/outputs; and to assess model applicability to
address climate-change related questions. The results represent the
state of the science for coastal zone vegetation models, serve as a
resource to guide model users, and identify future model development
requirements. A literature review was performed to identify coastal
vegetation simulation models for common coastal habitats categories.
The habitats included in this review must be structured by rooted veg-
etation and influenced by tidal fluctuations or otherwise coastally
influenced (e.g., subjected to inundation from coastal storms, ecologi-
cal system is structured by salinity gradients). Based on these criteria,
the following habitats were included:

e coastal wetlands (e.g., salt marsh, mangroves, freshwater wetlands),
e seagrass beds,

e dune complexes,

e coastal forests (e.g., maritime and floodplain forests), and

e coastal landscape models, including barrier islands, which are often

uniquely described in models.

Tidal and freshwater submerged aquatic vegetation aside from
seagrass beds, were omitted from this review because they are not
typically modeled based on explicit coastal processes (Carr
etal, 1997).

2 | METHODOLOGY AND CRITERIA FOR
MODEL INCLUSION AND EXCLUSION

A literature review was conducted winter and spring 2021 using a
combination of backward and forward snowballing utilizing start sets
derived from an initial search using the term “model” plus the habitat
name as well as any well-known models of the habitat (Wohlin, 2014).
Unique models identified using the snowballing method were

screened to determine if they met the following specific criteria:

1. Included relevant exogenous coastal and terrestrial processes that
affect vegetation distribution; and
2. Dynamically simulated vegetation biomass (i.e., biomass changed

over time within the model) either implicitly or explicitly

These criteria exclude habitat suitability, scaled physical, statistical,
species distribution, global, and remote sensing models. Similarly, we
do not include global-scale models, plant-scale models where the focus
is an individual plant, or where the focus includes simulating organ-
level functions. The models discussed were created independently or
represent significant modifications to existing models such that they
could be considered new. Publications that utilize existing models
without significant changes to the model itself were excluded. Inte-
grated or coupled models are mentioned briefly in each habitat section,

but are not reviewed in detail unless biomass is dynamically simulated.
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3 | RELEVANT MODEL PROCESSES
INCLUDED AND EXCLUDED

A standard rubric was developed to compare models across habitat
types with respect to model complexity, scale, included endogenous
and exogenous processes and resulting vegetation dynamics within
the ecological hierarchy (Figure 2), as well as simulated vegetation
metrics output (e.g., density, biomass, etc.). The hierarchy presented in
Figure 2 is not a representation of model characterization per se but
serves to discern between the spatiotemporal scales of the vegetation
processes simulated within models. Models may include processes
from several spatiotemporal levels explicitly or implicitly.

All ecosystem and exogenous physical processes are described as
physical drivers. Physical drivers are a combination of large-scale pro-
cesses (i.e., climate and geology) and regional and local-scale pro-
cesses that integrate coastal and terrestrial drivers (e.g., sediment
transport, groundwater discharge) as well as possible anthropogenic
disturbances. Allocation of biomass among plant organ systems
(e.g., roots, stems, leaves) is noted for models whenever possible.
Note that plant growth is not considered a separate process in
Figure 2, but instead results from endogenous plant processes that
produce and consume carbohydrates (e.g., photosynthesis, respira-
tion). For simplicity, growth is documented as a plant-scale process in
cases where processes controlling growth such as photosynthesis are
not explicitly simulated. Processes that occur at the vegetation patch
and community dynamics scales (Figure 2) are also documented for
each model and metrics describing these processes such as diversity
and plant density are described.

In each habitat section, an overview of the habitat as well as the
various models that met the review inclusion criteria are discussed.
Models that do not have a specific name are discussed by author
name and year. For all models, the processes and stressors included
are reviewed in more detail and explicitly denoted within a table that
describes model use elements (i.e., spatiotemporal scale and extent,
and model-specific details), and the physical and biological drivers and
processes included (following Figure 2).

4 | COASTAL ZONE HABITAT
VEGETATION SIMULATION MODELS
4.1 | Coastal dune habitats

Coastal dunes line the periphery of beaches in developed and natural
settings worldwide as the first line of defense during storms
(Martinez & Vazquez, 2006). The role of plants to structure foredunes
and other coastal dune habitats was first recognized over a century
ago (Cowles, 1899; Warming, 1891). Modeling efforts surrounding
this habitat have historically been predominantly geomorphological,
lacking the inclusion of vegetation and or biological processes affect-
ing vegetation (Jackson & Nordstrom, 2019; USACE, 1995; Walker
et al., 2017). In the past two decades there has been increased inclu-
sion of plants and nature-based solutions as part of beach and dune
management (Baas, 2002; Elko et al., 2016; Feagin et al., 2015). There
are currently nine dune models that meet the review criteria (Table 1).
However, some widely used simulation models did not meet the

review criteria, but have been expanded to begin to incorporate

vegetation components, namely XBEACH (Roelvink et al., 2009) and
CSHORE (Johnson et al., 2012), which can now include how vegeta-
tion impacts wave setup and runup, with vegetation treated as a con-
stant static roughness component. Although they do not meet the
review criteria because of their lack of hydrodynamic forcings, it
should be noted that inland dunefield and arid desert dune models,
such as Werner (1995), Nishimori et al. (1998), and Duran and Herr-
mann (2006), are considered seminal for coastal dune models and can
be applied to coastal dunes. The Discrete Ecogeomorphic Aeolian
Landscape (DECAL) dunefield model (Nield & Baas, 2008), lacking
hydrodynamics, is treated as an exception to this. It is included
because it has been applied to coastal systems in multiple instances
(e.g., Galiforni-Silva et al., 2020; Zhang & Baas, 2012) and has subse-
quently served as the theoretical background for other coastal dune
models (e.g., Keijsers et al., 2016).

Models have predominantly simulated spatiotemporal changes in
dune vegetation as percent cover or height in response to aeolian
burial and erosion events where vegetation decreases aeolian sedi-
ment transport and causes deposition. Dune habitat models that
emphasize landscape evolution through hydrodynamic or aeolian pro-
cesses have comparatively fewer biological elements. Eight models
include vegetation in this manner: de Castro (1995), Baas (2002),
DECAL (Nield & Baas, 2008), de Luna et al. (2011), Coastal Dune
Model (CDM; Duran & Moore, 2013, 2015), a modified version of the
CDM (Moore et al., 2016), Dune, Beach, and Vegetation model
(DUBEVEG; Keijsers et al., 2016), and DUNA (Roelvink &
Costas, 2019). In comparison, the DOONIES model (Charbonneau
et al., 2022) is centered around plant biology as its main emphasis
while the geomorphological elements are comparatively simple.

The timestep of all dune habitat models varies from hourly to
multi-year largely as a function of the different levels of complexity
regarding tidal cycles and aeolian forcings. Model details and the vari-
ous processes included in the models are in Table 1, respectively,

where most grass species are modeled after Ammophila.

4.2 | Coastal wetlands

Wetland habitats found along tidal extents of bays, estuaries, and
inlets include salt marshes (Section 4.2.1), mangrove forests
(Section 4.2.2), and tidal freshwater wetlands (Section 4.2.3). Forested
non-tidal coastal wetlands are also discussed (Section 4.4). Coastal
landscape models that simulate the vegetation dynamics of all coastal
wetland types across coastal ecotones are discussed separately as
their spatial scale and scope encompasses multiple habitat types
(Section 4.5). Coastal wetlands are highly productive carbon sinks,
encompassing a large proportion of the global blue carbon budget
(Duarte et al., 2013). They provide storm protection (i.e., wave attenu-
ation and shoreline stabilization), valued at over $23 billion (USD)
annually in the United States alone (Costanza et al., 2008), and cap-
ture sediment which increases elevation relative to sea level rise (SLR)
(Hanley et al., 2020). As a result, models may be applied towards
addressing issues related to storm response and coastal squeeze
(i.e., coastal habitat loss where natural landward retreat of habitats in
response to SLR is blocked by development) under different SLR sce-
narios. In these habitats, vegetation has predominantly been treated

dynamically due to the influence of water levels on biomass.
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The term coastal salt marsh includes brackish and intermediate
marshes with average salinity levels greater than 5 ppt using the limits
described in Mitsch and Gosselink (2015). Like dune models, numeri-
cal modeling applications in salt marshes initially focused on geomor-
phic evolution (i.e., vertical accretion) under varying SLR and sediment
supply scenarios (e.g., Allen, 1990; French & Spencer, 1993;
Krone, 1985; Temmerman et al., 2003). However, marsh ecology and
geomorphology are tightly coupled such that the presence of vegeta-
tion further enhances vertical accretion by trapping mineral sediment
and directly adding organic material (Fagherazzi et al., 2012; Morris
et al., 2002). There are currently 17 salt marsh models that meet the
review criteria (Table 2).

The basis of most salt marsh models is a sediment cohort model-
ing approach simulating autochthonous organic sediment production
(Allen, 1990; Callaway et al., 1996; Morris & Bowden, 1986), but veg-
etation productivity and model parameters related to vegetation in
these models is assigned rather than explicitly simulated. For an over-
view of salt marsh morphodynamic processes, modeling approaches,
and challenges, see Fagherazzi et al. (2020). The Marsh Equilibrium
Model (MEM), renamed the Coastal Wetland Equilibrium Model
(CWEM) (Morris et al., 2019), a zero-dimensional (i.e., patch-scale)
model that predicts marsh elevation change, is the first model implic-
itly incorporating biomass productivity using the sediment cohort
modeling approach; it simulates biomass productivity in single-species
zones as a function of hydroperiod (Morris et al., 2002). This model is
further discussed in Section 4.2.2.

The biomass productivity-inundation relationship utilized in
MEM/CWEM has been adapted and/or reformulated for more spa-
tially complex models (i.e., transect and two-dimensional [2D] local
and regional models) demonstrating feedbacks between hydrodynam-
ics, vegetation, and sedimentation (Alizad et al., 2016; D’Alpaos
et al., 2007; Kirwan et al., 2007; Kirwan et al, 2016; Langston
et al., 2020; Marani et al., 2013; Mudd et al., 2004), additional species
(Swanson et al., 2014), and/or additional physical processes
(Mariotti, 2020; Mariotti & Fagherazzi, 2010). In these models, bio-
mass increases sediment deposition and elevation, altering inundation
frequency and duration, leading to further biomass adjustments.
Temmerman et al. (2007), Best et al. (2018), and Briickner et al. (2019)
modeled marsh evolution at a local scale through a coupled hydrody-
namic, morphodynamic, plant growth model using Delft3D software
with varying levels of ecological complexity. Belliard et al. (2015) simi-
larly determined the impact of vegetation parameterization on chan-
nel morphology using a different set of coupled hydrodynamic and
morphodynamic models. Plant structure directly impacts hydrodynam-
ics (i.e., turbulence and drag), which affect plant establishment,
growth, dispersal, and mortality explicitly calculated through the plant
growth module. More recent models have explicitly incorporated
additional physical process feedbacks to simulate the effects climate
change on salt marsh systems (i.e., Rietl et al., 2021) or have been
employed to assess the effects of marsh management techniques
such as freshwater diversions using the similar inundation-biomass
relationships as other patch-scale marsh models such as MEM
(e.g., Brown et al.,, 2019). For simplicity, most of these models assume

a single vegetation class (commonly Spartina alterniflora) that

represents a marsh vegetation zone as opposed to a broader suite of
taxa and communities impacting landscape level dynamics
(Section 4.6).

Salinity gradients control the distribution of salt marsh species,
with biodiversity inversely correlated with salinity. Since many models
were developed for classical salt marsh communities with salinity
levels close to those of seawater, salinity is not explicitly considered
in all models, limiting their value in brackish and transitional marsh
systems where salinity gradients control productivity and distribution
(Mitsch & Gosselink, 2015).

422 | Mangroves

Mangrove forests are highly productive, salt-tolerant habitats found in
tropical and subtropical coastal regions. Because individual mangrove
trees evolve over relatively long temporal scales, relative to other
coastal vegetation (i.e., salt marshes), making it more difficult to collect
observational and experimental data, models are useful tools to simu-
late these longer-term forest dynamics.

Canopy dynamics and the effect of resource availability, mainly
light availability, drive growth, survival, and seedling success in man-
grove and other woody vegetation forest models (Busing &
Mailly, 2004). Most mangrove models are individual-based gap models
focusing on stand and canopy-level changes induced by localized
change in individual trees or tree patches. Forest gap models are dis-
cussed in more detail in Section 4.4. Most mangrove models quantify
above-ground biomass, but very few calculate below-ground biomass
due to limited allometric relationships between above- and below-
ground biomass (Komiyama et al., 2005, 2008).

There are currently five models that meet the review criteria for
mangroves (Table 3). FORMAN was the first application of an
individual-based gap model in mangrove habitats, and simulated
establishment, growth, and mortality as a function of soil characteris-
tics and light availability (Chen & Twilley, 1998). Both KIWI (Berger &
Hildenbrandt, 2000) and mesoFON (Grueters et al., 2014) build upon
FORMAN and include a field of neighborhood (FON) approach, which
considers density-dependent interactions in both above- and below-
ground resources. BETTINA (Peters et al., 2014), also applies the
FON, but explicitly includes below-ground biomass and allocation
adjustments between above- and below-ground biomass based on
resource limitations. While the former models mostly focused on gen-
eral competition between trees, Teh et al. (2008) explores competition
between mangroves and hardwood hummocks following a distur-
bance. Additional notable mangrove models are MANGO (Doyle,
Girod, & Books, 2003) and MANHAM (Sternberg et al., 2007), but are
not included in the table given that the necessary details to recreate
the model and determine how it functions are absent from the litera-
ture (Doyle et al., 2003) and because it does not simulate growth or
the plant-scale processes that determine growth, respectively. Addi-
tionally, there are two integrated models of note not included in
Table 3, MANTRA (Teh et al., 2013) which is the integration of Teh
et al. (2008) and MANHAM for modeling vegetation and vadose zone
hydrology combined with the USGS model SUTRA (Voss &
Provost, 2002) for groundwater hydrology and salinity, and MANGA
(Bathmann et al., 2020) which is the coupling of BETTINA for
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mangrove dynamics and OpenGeoSys (Kolditz et al., 2012) to model

porewater salinity hydrodynamics.

As noted previously in Section 4.2.1, the MEM was recently re-
parameterized for mangroves as a CWEM case study simulation in an
ongoing effort to expand the model (Chapman et al., 2021; Morris
et al,, 2019). Valuable resources on the state of mangrove modeling
are Twilley and Rivera-Monroy (2005) with an in-depth review of
mangrove models and Peters et al. (2020) with an updated synopsis
on the state-of-the-art in mangrove stand modeling. Both provided
commentary on existing model shortcomings and suggested processes
and measurements relevant for conservation and management that an

“ideal” mangrove model should include.

423 | Tidal freshwater wetlands

Tidal freshwater wetlands extend inland past the extent of saline
waters (salinity < 5 ppt) to the head of tide. This zone varies in extent
by topography and tide range with the widest tidal freshwater wet-
land bands occurring along river deltas and coastlines (moderate to
high tide ranges) of low relief. These wetlands can be split into two
sub-habitats by the dominant vegetation community: herbaceous
marshes and tidal swamp or floodplain forests. Herbaceous marshes
include two distinct sub-types: floating marshes regionally referred to
as flotant and newly formed marshes within large river deltas
(Mitsch & Gosselink, 2015). With the continued influence of tidal
exchange absent salinity stresses, tidal freshwater wetlands tend to
be high in diversity and productivity. Tidal floodplain forests resemble
bottomland hardwood forests in structure and function although their
morphology is characterized by ridges and swales.

Few models have been specifically designed for tidal freshwater
wetlands given that they are geographically constrained and encom-
pass many species (Morris & Bowden, 1986; Temmerman
et al., 2003). Only three tidal forest models were included in this
review (Carr et al, 2020; Hoeppner & Rose, 2011; Rybczyk
et al,, 1998) and are described in Section 4.4. The salt marsh models
(Section 4.2.1), WARMER (Swanson et al., 2014; Thorne et al., 2018)
and MEM (Schile et al., 2014), and forest model FORFLO (Section 4.4;
Conner & Brody, 1989) have been adapted and applied to herbaceous

tidal freshwater marsh and tidal swamp forests, respectively.

4.3 | Seagrass beds
Seagrasses are submerged, flowering plants found in shallow temper-
ate and tropical marine environments. They provide a wealth of eco-
system services including critical fish and endangered species habitat,
nutrient cycling and sequestration, and sediment stabilization (Hanley
et al., 2020; Unsworth et al., 2019). However, seagrass populations
are globally in decline, largely due to poor water quality, increased
coastal development, and climate change (Duarte et al., 2013; Orth
et al., 2006). Numerical model development has aided in efforts to
restore, expand, and protect these sensitive habitats by improving dis-
tribution predictions to better understand habitat dynamics and
inform management actions.

Of the 15 models meeting the review criteria (Table 4), some

were developed aiming to improve mathematical simulations of

seagrass growth (i.e., Short et al, 1980) or community distribution
(Baird et al., 2016; Fong & Harwell, 1994), while others have direct
management applications (i.e, Carr et al, 2012; Cerco &
Moore, 2001; Yoshikai et al., 2021). All models simulate seagrass
dynamics, usually at a patch scale, but Cerco and Moore (2001),
Plus et al. (2003), Baird et al. (2016), and Yoshikai et al. (2021) are
spatially explicit, calculating seagrass distribution at local and
regional scales.

All models incorporate light and water temperature as physical cli-
mactic drivers and photosynthesis and respiration as plant-scale
drivers. Although respiration is considered a loss term in all models,
mortality is explicitly defined, as senescence or physical stress, except
in Bocci et al. (1997), Cerco and Moore (2001), and Elkalay et al.
(2003). Nutrient concentration is omitted as a physical driver in Short
et al. (1980), Verhagen and Nienhuis (1983), Zharova et al. (2001), and
Carr et al. (2010, 2012) and translocation is not explicitly included as a
plant-scale process in Short et al. (1980), Verhagen and
Nienhuis (1983), Fong and Harwell (1994), Zharova et al. (2001), and
Carr et al. (2010).

Light availability and water temperature constrain seagrass
growth in all included models. Light attenuation through the water
column due to water color and turbidity is accounted for in all models.
Some models also include epiphytic attenuation (e.g., Cerco &
Moore, 2001; Madden & Kemp, 1996; Wetzel & Neckles, 1986) and
self-shading in canopy dynamics affected by density and/or leaf area
(Baird et al., 2016; Wetzel & Neckles, 1986). Photosynthesis and res-
piration rates are both temperature-dependent and seasonally vari-
able in all models. However, the relative importance of temperature
likely varies latitudinally with less import in tropical regions (Yoshikai
et al., 2020). Additional growth limiting factors in some models include
water column and sediment nutrients affecting shoot and below-
ground growth, respectively (i.e., Bocci et al, 1997, Cerco &
Moore, 2001, etc.) and space (i.e., Bocci et al, 1997; Elkalay
et al., 2003; Verhagen & Nienhuis, 1983; Wetzel & Neckles, 1986;
Zharova et al., 2001).

44 | Coastal forests

Coastal forests (i.e., maritime and floodplain forests) are important
woody-dominated, semi-terrestrial, peripheral habitats, but are
coastally influenced to a lesser extent than the previously discussed
habitats because they are typically more inland and typically non-tidal.
Unlike dunes, tidal wetlands, and seagrass beds, coastal forests are
unlikely to keep pace with SLR via vertical growth or landward migra-
tion given the intolerance to saltwater inundation combined with the
relatively longer timespan of successional processes as well as proxim-
ity to surrounding development (Grieger et al., 2020).

Inland along many sandy coasts, including barrier islands, maritime
forests are the apex or final successional stage of dune ecosystems.
They provide critical habitat and stopover sites for resident
vertebrates and  migratory birds  worldwide, respectively
(Chamberlain, 1982). They potentially sequester more carbon than
associated non-coastal inland forests (Smart et al., 2020), but their
role in carbon budgets has not been incorporated (Howard
et al., 2014). Despite their importance, maritime forests are generally

research-poor and no habitat-specific modeling efforts were found.
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Similarly, to our knowledge, no existing models, such as forest gap

Like maritime forests, coastal floodplain forests provide invaluable
habitat, but are more globally abundant and diverse both in commu-
nity composition and spatial extent (Wang et al., 2010). Coastal flood-
plain forests are seasonally or irregularly flooded by both coastally
influenced stream or river levels and storms, but otherwise function

like bottomland forests, allowing models developed for those systems

Few models have been explicitly designed for coastal forests;
rather, models of these systems are often based on underlying princi-
ples of the seminal gap models JABOWA (Botkin et al., 1972), FORET
(Shugart, 1984; Shugart & West, 1977), SORTIE (Pacala et al., 1993),
and LANDIS Il (de Jager et al., 2019; Scheller et al., 2007; Scheller &
Mladenoff, 2004), which largely vary in how growth, competition, and
seedling establishment are treated. Although some of these models
would be applicable to the coastal forest system with some limited
modifications, we only include models developed specifically for these

Both Rybczyk et al. (1998) and Hoeppner and Rose (2011) were
specifically developed as coastal forest models. Carr et al. (2020)
evolved from an earlier iteration of a coastal salt marsh model (Kirwan
et al., 2016), incorporating coastal forest dynamics to better capture
the migration of salt marsh into formally forested areas. Many hydro-
dynamic fluvial models were excluded from this review because vege-

tation is treated as a non-dynamic roughness component affecting

Landscape vegetation models use observed or predicted changes in
the spatial configuration of the landscape and associated autogenic
physical drivers to predict associated changes in vegetation communi-
ties. Coastal change models that predict landcover categorically and
lack productivity or biomass elements, such as SLAMM (Park
et al., 1989; Warren-Pinnacle Consulting, 2016), MAIM (Cadol et al.,

Six landscape models meet the review criteria, four of which were
developed for simulating long-term changes in coastal Louisiana
starting in the 1980s and the other two were developed for barrier
islands (Table 6). Modeling efforts specific to coastal Louisiana began
Landscape Spatial Simulation
(CELSS; Costanza et al., 1988, 1990) which was developed from a
more general landscape model (Sklar et al., 1985) and estimates pri-
mary productivity by wetland classes incorporating many abiotic forc-
ings. The Barataria Terrebonne Ecological Spatial Simulation (BTELSS;
Reyes et al., 2000) utilizes an expanded study area, and more
advanced hydrodynamics and biomass simulation algorithms. Like
CELSS, BTELSS classifies vegetation into broad habitat classes, but
those classes are defined and parameterized for specific dominant
species. The Louisiana Vegetation Model (LaVegMod; Visser
et al., 2013; Visser & Duke-Sylvester, 2017) was designed to integrate
with more advanced hydrodynamic models to better predict eco-
geomorphic processes affecting topography. Its second version, LaV-

egMod v2 (Visser & Duke-Sylvester, 2017) includes 36 plant species
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simulated as mixed assemblages and includes more biological drivers
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TABLE 5 Model summary, physical and biological drivers and processes, and vegetation representation included in the three reviewed coastal floodplain models.

Community-

scale

Organ-system

Model summary and application

details

Vegetation metrics

biomass allocation

processes Plant-scale processes

Physical processes

Vegetation

Model

-Leaf biomass

Implicit: Above-

Biomass turnover:

Climate: temperature

Aggregated forested wetland

Wetland elevation model

Rybczyk

-Leaf litter production

-Root biomass

and below-
ground

Decomposition, leaf litter

production
Primary productivity

Hydrodynamics: inundation

species

application in subsided

etal., 1998

forested wetland (point-based)

Timestep: Weekly
Coupling: n/a

-Total floating aquatic

vegetation
biomass

%)
0
@
£

2

e

=]
o
o

%
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-Basal area

Explicit: Above-

Mortality

Climate: season Competition

Two species (parameterized as

Individual-based swamp forest

Hoeppner &

-Seedling density

ground

(light)

Dispersal

Hydrodynamics: inundation

Taxodium distichum and Nyssa

aquatica)

succession model on a

rectilinear grid
Timestep: Weekly
Coupling: n/a

Rose, 2011

-Wood production

Local environment: salinity
Resources available: light

Recruitment

Space

Implicit:

Mortality

Competition:

Climate: wind

Two general taxa (Herbaceous/

Marsh to upland forest

Carr

Above-ground

Morphology: root depth

space
Dispersal

Hydrodynamics: inundation

saltmarsh, tree)

transgression along a transect

Timestep: Annual
Coupling: n/a

et al.,, 2020

(tidal) (elevation); SLR

Local environment: salinity
Resources available: light

Note: n/a, not applicable.

compared to its predecessors. The LaVegMod habitat selection and
allocation algorithms were incorporated into the Delft3D environ-
ment for the Integrated Biophysical Model to better represent vege-
tation dynamics by modeling species distribution and biomass
allocation (Baustian et al., 2018). Biomass was simulated using the
VEGMOD process within the Delft Water Quality library of Delft3D
(Deltares, 2021). More information on VEGMOD is included in
Section 4.6.

There were only two barrier island models that included vegeta-
tion, the ISLAND model and Barrier3D. The ISLAND model is a
temporally-explicit blend of biological, geomorphological, and ground-
water barrier island processes simulating four different generic vege-
tation taxa densities (Rastetter, 1991). Barrier3D it is a spatially-
explicit exploratory model of barrier evolution where a recent shrub
vegetation expansion and mortality module was created to simulate
how changing vegetation dynamics impact barrier island topography
over decades to centuries (Reeves, 2021; Reeves et al., 2022).

4.6 | Other relevant models

Throughout the course of the literature review, several models did
not strictly fit the categories prescribed, but warrant mention given
their advanced treatment of vegetation and potential applicability to
coastal systems. This is not intended to be an exhaustive list of
potentially applicable models as many water quality and hydrody-
namic models include a wide variety of methods to account for the
role of vegetation.

VEGMOD (Deltares, 2021) is a module within the Delft3D water
quality suite and was designed to simulate terrestrial and macrophyte
biomass as a nutrient cycling element for waterbodies such as
manmade reservoirs. Carbon, nitrogen, phosphorus, and sulfur stored
in vegetation stems, leaves, branches, roots, and fine roots are
released to the detritus pools in the water and sediment matrix fol-
lowing inundation-induced vegetation mortality. Habitat niche spaces
are defined so the model can be applied to a wide variety of systems
(e.g., Baustian et al., 2018, see details on its application in Table 6).

The Soil Water Assessment Tool (SWAT; https://swat.tamu.edu)
is a spatially semi-distributed, non-point source watershed to basin
scale model that has been used to simulate groundwater dynamics,
land-use change, environmental impacts, and climate change (Wang
et al., 2019). SWAT is unique in that is has been used extensively
(e.g., over 3400 papers published from 2008 to 2019; Wang
et al., 2019). It contains a process-based native vegetation growth
module that treats vegetation as a generalized entity where biomass
production (in kg ha™!) of a single plant community is a function of
temperature, intercepted photosynthetic radiation (PAR), and leaf
area index (LAI) (Neitsch et al., 2011). Parameterizations can vary for
the species being modeled; SWAT contains a suite of species-specific
parameters in its database. Similar to VEGMOD, vegetation is
included as part of SWAT to quantify its effects on flow and nutrient
dynamics. Vegetation outputs are coarse in comparison to the other
vegetation dynamics models described previously. Recently, several
modules have been developed to improve upon SWAT'’s vegetation
growth functionality, from multispecies-based approaches (Lai
et al., 2020) to refinements of processes included to better represent

non-temperate species (Alemayehu et al., 2017; Ma et al., 2019;
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(Continued)

TABLE 6

Organ system

biomass

Community-

scale

Plant-scale

Physical and ecosystem

processes

Model summary and application

details

Vegetation metrics

processes allocation

processes

Vegetation

Model

-Percent cover
-Height

Expilicit:

Establishment
Growth

Dispersal

Hydrodynamics and Disturbances:

Single species (parameterized as

Exploratory model of barrier

Barrier3D (Reeves, 2021;

-Above-ground

water level (including storm

events)
Sediment transport: erosion;

Morella cerifera)

evolution with ecological

Reeves et al., 2022)

Mortality

module of shrub expansion

and mortality on a rectilinear

grid
Timestep: Annual

Coupling: n/a

PIERCY ET AL.

deposition

Note: n/a, not applicable.

?Deltares (2014),

bVisser et al. (2013, 2017),

“Deltares (2021).

Strauch & Volk, 2013; Valencia et al., 2022). For a more comprehen-
sive review of SWAT, see Krysanova and Arnold (2008) and Wang
et al. (2019).

The Riparian Vegetation Simulation model (RVSM; Zhang
et al., 2019) is a model designed to simulate the evolution of flood-
plain forest and the associated alteration in floodplain current veloci-
ties, water levels, scour, and deposition. While it could be included in
the collection of forest models (Section 4.4) given its potential for
application to model ecogeomorphic floodplain forests interactions, it
does not explicitly output biomass metrics, although some related
metrics such as tree diameter are calculated. Like other forest models,
RVSM includes many abiotic and biotic drivers such as drought stress,
flooding duration, scour, deposition/burial, water table depth, compe-
tition, seed dispersal, establishment, growth, mortality, senescence,
and shading. However, this model has not been applied to coastal set-
tings and would require alterations to produce similar outputs to

models listed in Section 4.5.

5 | MODEL COMMONALITIES AND GAPS

5.1 | General observations

No models surrounding any habitat explicitly simulated all the plant or
patch and community processes listed in Figure 2. Most models
focused on the effect of exogenous processes, largely
hydrodynamically-influenced, on vegetation and typically simulate
only two or three endogenous vegetation processes (most commonly
growth and mortality). Though, at the intended spatial and temporal
application of most models, fully simulating all endogenous processes
is not necessary to produce usable results. Timesteps varied
depending on the processes included in models and questions being
asked. In general, models that were only focused on exogenous fac-
tors, especially those intended to couple with geomorphological
models, had larger timesteps (e.g., annual) compared to models that
included endogenous factors had shorter timesteps (e.g., days)
(Stallins, 2012; Viles, 2020). Some models explicitly incorporated dif-
ferent timesteps for hydrodynamic processes, which exhibit obvious
changes over hourly to daily timescales, and morphodynamic and veg-
etation growth processes, which occur more gradually (e.g., Belliard
et al,, 2015; Carr et al., 2012).

5.2 | Plant-scale processes

Across all habitats, few models explicitly include processes or produce
outputs at the organ or organ system level, especially with respect to
root systems. Plant organ and organ system processes are modeled
implicitly in plant-scale allocation of carbohydrate and biomass, which
results in many models only simulating above-ground biomass metrics.
Seagrass models were more likely to include below-ground biomass
than the other models. This may be because submerged aquatic vege-
tation root and rhizome biomass are considered reliable proxies for
the effects of longer-term environmental stressors (Vonk et al., 2015).
The exclusion of below-ground biomass maybe from limited above-
and below-ground allometric relationships in many habitats (Adame
et al., 2017; Komiyama et al., 2005, 2008) or the model intended use
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(e.g., forest production). Neglecting below-ground biomass may inad-
vertently exclude key elements of resource scarcity (e.g., space, nutri-
ents, water, oxygen; Biondini, 2001) or competition. More robust
handling of root organ systems may require the inclusion of additional
biotic and abiotic drivers, such as soil and microbial properties, which
are not currently included in most of the models (Laniak et al., 2013).
Integration with existing soils dynamics models can facilitate future
development of vegetation dynamics models that better represent
below-ground biomass dynamics.

Most models, with the exception of seagrass, rely on implicit,
empirically-derived relationships linking biomass and/or growth and
mortality to abiotic drivers such as water depth or temperature. In
addition to seagrass models, four models simulated photosynthesis
and/or respiration explicitly (DOONIES, Charbonneau et al., 2022;
Integrated Biophysical Model, Baustian et al., 2018; SWAT, Neitsch
et al.,, 2011; and VEGMOD, Visser et al., 2013 & 2017).

5.3 | Community-scale processes

Dispersal is one of the more common patch/community scale pro-
cesses simulated. When considered, dispersal is largely handled in a
rudimentary way based on the presence of suitable local environmen-
tal conditions. Dispersal can be further refined by explicitly simulating
dispersal mechanisms (i.e., clonal, allochory seed or autochory seed) to
duplicate vegetation distribution patterns more realistically (Briickner
et al., 2019). However, simulating realistic patterns of plant distribu-
tion may require the inclusion of other related processes such as
inter- and intra-specific competition and facilitation, as well as the
simulation of more advanced below-ground metrics and abiotic
conditions.

Dispersal dynamics, including establishment and the resulting
plant distribution, ultimately underpin succession; however, succes-
sion is only explicitly simulated in forest models, like LANDIS Il
(de Jager et al, 2019; Scheller et al., 2007; Scheller &
Mladenoff, 2004) where forest gaps are colonized by shrub species.
Habitat switching due to land-use or environmental changes is mostly
confined to the set of landscape models. While some models
(e.g., Kirwan & Murray, 2007) support limited vegetation change as a
result of geomorphological change brought on by hydrodynamic forc-
ings, the habitat-specific focus of many models limits their use.

Competition is only explicitly included in mangrove and coastal
floodplain forests, where it is often simulated implicitly using space as
a proxy or explicitly as above-ground competition for resources; one
salt marsh model is an exception to this (Marani et al., 2013), but com-
petition is treated as probabilistic based on habitat suitability, not
process-based. Models that utilize dispersal rules that prevent plants
from colonizing or dispersing into cells occupied by other plants
include a de facto form of competition but competition as a process
was not explicitly conceptualized in most of models that utilize such
rules.

The models reviewed, excluding landscape models, typically simu-
lated between one and three species, consistent with the low diver-
sity of prominent species in most coastal habitats. Some dune and
marsh habitat models use functional communities or broader taxa to
represent a group of species, often modeling one generic grass spe-

cies representing a habitat-building species (Table 1) (Rastetter, 1991),

while others simulate the dominant species. Within habitats this may
not limit model applicability given similarities among plant functional
types across latitudinal gradients. However, across habitats, species-
specificity may hinder applicability to other systems. For example,
species common to brackish, intermediate, and tidal freshwater wet-
lands are not as well studied as those found in saltwater environments
(Rivera-Monroy et al., 2019). Similar limitations have been cited for
inland freshwater wetlands, limiting the development and application
of process-based models to relatively few well-studied systems
(Williams et al., 2020).

5.4 | Applicability to ecosystem management
questions

While the models discussed are advanced in many ways and often
represent years of dedicated work, their use in coastal vegetation and
habitat management is limited. Most models do not explicitly simulate
anthropogenic influences such as potential management actions or
the influence of invasive species, which limits their use for coastal
management planning and adaptive management (Reichert
et al., 2015). Newer versions of the MEM/CWEM (Morris et al., 2019)
do include the effects of thin layer sediment placement at pre-defined
intervals, SedVeg (Brown et al., 2019) was explicitly designed to ana-
lyze the effects of freshwater diversions, a new interface with CDM is
designed to simulate common beach and dune management actions
such as planting, beach nourishment, or grading (Ruggiero
et al., 2019), a few seagrass models explore growth dynamics under
nutrient and sediment reduction scenarios (Cerco & Moore, 2001;
Carr et al,, 2012; Yoshikai et al., 2020), and some forest models such
as LANDIS 1l (de Jager et al., 2019; Scheller et al., 2007; Scheller &
Mladenoff, 2004) to simulate the effects of harvest and prescribed
burning. This set of models is not unique in that sense as even terres-
trial biosphere models grapple with how to simulate the effects of
human interventions (Fisher et al., 2014). However, to advance the
use of such models in coastal management, the effects of manage-
ment actions or other human activities such as restoration, invasive
species removal or beach nourishment should also be simulated. As
climate change and human development exacerbates the rate of
coastal change, new model functionality will be required. Modelers
should pursue opportunities to partner with managers via workshops
or mediated modeling approaches to identify and realistically repre-
sent relevant management actions within existing models and model

applications.

5.5 | Applicability to climate change questions

Even in relatively undisturbed coastal settings, the rate of observed
and predicted coastal change necessitates examination and inclusion
of additional exogenous and endogenous plant, patch, and
community-scale processes to account for complex interactions
between biotic or abiotic drivers, such as the effect of increased air
and soil temperatures, changes in water availability, or introduction of
new invasive or non-invasive plant and/or faunal species. Patch and
community scale processes such as dispersal, competition, facilitation,

and succession are required to understand how species ranges may
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change or shift. Further unification of habitat-specific and landscape

approaches (such as in Baustian et al., 2018) will facilitate additional
predictive power of coastal vegetation models across a mosaic of
changing coastal habitats. Shifting towards prognostic models of
plant-scale processes (e.g., directly simulating photosynthesis and res-
piration as opposed to relying on implicit relationships between bio-
mass and known stressors) required to extend the applicability of
models for Anthropocene-related issues (e.g., climate change, devel-
opment) where past empirical relationships may break down. There
are promising approaches for bridging this gap, such as implementing
functional-structural plant modeling into an agent-based framework.
This approach would provide a three-dimensional (3D) structure of
plants (e.g., leaf curvature, plant height, shape, etc.) with the bottom-
up scalability of spatially-explicit agent-based modeling. Approaches
used in terrestrial biosphere models may need to be scaled down to
understand how changes to global-scale processes (e.g., changes in
atmospheric carbon dioxide concentrations) will manifest at a local or
project scale where they may facilitate species shifts (Rietl
et al,, 2021).

6 | CONCLUSIONS

Fifty-four coastal zone habitat simulation models met the review
criteria and were examined to determine the biotic and abiotic exoge-
nous and endogenous processes included and the scale and scope of
applications. While the level of detail varied and was driven by the
questions being asked, there were some general commonalities across
the models. Biomass accumulation was often quantified correlatively
and treated as a deterministic rather than dynamic (e.g., using con-
stants for biomass allocation to plant parts and root-shoot ratios), and
most models neglected below-ground biomass which is an important
stabilization component in coastal ecogeomorphic systems. By not
capturing the inherent processes and dynamism of biological growth,
the models are limited in their applications for predicting growth out-
side of the system for which they were developed. For example,
changes in abiotic drivers such as those caused by climate change
could invalidate some empirical growth relationships, especially those
that are developed from limited datasets.

Similarly, apart from dispersal and instances of competition being
included, community and patch scale processes were largely
neglected. Future models should move towards explicit incorporation
of these and other broader scale biological processes to more accu-
rately predict how biomass and species composition respond to
changes in coastal landscapes. Coastal systems are influenced by
numerous exogenous drivers over large spatial and temporal scales,
such as hydrodynamic forcings, climate change, sea level rise, manage-
ment, among others but most models were applied at a patch to local
scale (excluding landscape models), where these drivers were either
absent or modeled at a local level. In most models, these drivers were
limited to local hydrodynamically-related factors.

Potential opportunities to improve coastal vegetation models
largely mirror similar discussions with respect to terrestrial biosphere,
global vegetation dynamics, and other ecological models (Franklin
et al., 2020; Fulton et al., 2019). A move towards prognostic vegeta-
tion dynamics models that include community-scale processes such as

succession and facilitation is necessary to understand potential coastal

vegetation community shifts in response to climate change and
human development. Shifting model development to a landscape-
based approach will be critical to capture these large-scale processes.
This shift will likely include multidisciplinary model integration and
coupling (e.g., integrating engineering, physics, and ecological models
into a useable framework). The integration of landscape and habitat-
specific models will be necessary to understand and inform manage-
ment of coastal ecosystems as climate change shifts habitat bound-
aries, and this understanding is paramount to plan and develop

sustainable coastal futures.
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