

INGRAM SCHOOL OF ENGINEERING

Project Overview

TxDOT has supplied us with plans containing a proposed bridge over Panna Maria Creek located on N FM 81 Rd, Hobson TX. Our task was to create an alternative design to combat the harsh environment of site.

Our environmental obstacles include: > An influx in existing hydraulic conditions Silica rich soil due to excessive oil drilling > Increase in large oil truck traffic

Mix Constituents	Class C (HPC): 25% Fly Ash
Cement Type II Portland	15777 lbs
Fly Ash (Class F)	23547 lbs
Silica Fume	7536 lbs
Coarse Aggregate	31553 lbs
Fine Sand Aggregate	15777 lbs
Water/Reducers	3221 L ~ 4294 L
Maximum W/cm	0.53
Permeability (AASHTO T277)	750 coulombs

HPC Mix Design

According to TxDOT's Corrosion Protection Guide, our project is located within the Corpus Christi District (CRP) near the border of the San Antonio District (SAT) >Location contains chlorine and sulfate due to the mild coastal environment.

C2.05 – High Performance Box Culvert Bridge

Kamden Dziuk Arturo Figueroa Bryan Uptmore Julian Garcia

Existing Hydrology Conditions

Our existing hydrology analysis was conducted using the standard from the TxDOT Hydraulic Design Manual. As for our final calculations, we used the Rational Method to calculate the predicted values for 2, 10, 25, and 100 year design storms.

Final Design

Project

sponsor:

TxDOT

Existing	Conditions	Hydrolo	gy Calcu	lations - I	Panna Ma	ria Creek
Drainage	Drainage	т	\mathbf{O} (afa)	\mathbf{O} (of \mathbf{c})	\mathbf{O} (of \mathbf{c})	\mathbf{O} (of \mathbf{c})
Area	Area (ac)	I _c	Q_2 (cis)	Q_{10} (cis)	Q_{25} (cis)	Q_{100} (crs)
Area 1	35.59	20.62	26.47	37.12	44.16	55.62
Area 2	43.56	164.36	14.79	20.89	24.85	31.41
Area 3	6.80	42.18	3.56	4.94	5.85	7.34
Area 4	22.02	22.84	16.85	23.62	28.10	35.39
Area 5	64.38	31.74	35.61	49.43	58.60	73.49
Area 6	33.46	59.73	19.51	27.08	32.10	40.26
Area 7	9.45	14.15	8.40	11.87	14.16	17.86
Area 8	10.67	25.30	7.94	11.13	13.24	16.67
Area 9	7.10	29.31	6.04	8.46	10.07	12.68
Area 10	43.83	51.47	22.61	31.38	37.20	46.65
Area 11	14.95	17.90	9.53	13.37	15.90	20.03
Area 12	22.15	27.68	20.66	28.98	34.47	43.42
Area 13	20.15	151.52	8.60	12.15	14.45	18.26
Area 14	31.89	127.85	13.80	19.49	23.18	29.30
Area 15	18.48	10.00	21.12	29.85	35.59	44.91
Area 16	34.84	16.68	33.32	46.72	55.58	70.00
Total	419.32	813.32	268.79	376.47	447.50	563.29

Rational Method, Q = CiA

- \blacktriangleright Allowable Discharge = 2901 cfs

- Structural Capacity Increase of 80

Sustainability Evaluation

Envision G	ision Grading		Score		
Credit Category	Available	Earned	Percent		
uality of Life	96	84	88		
Leadership	132	103	78		
Resource Allocation	162	39	24		
latural World	200	154	77		
Climate & Resilience	190	62	33		
Fotal Points / %	780	442	57		

Capital and Life Cycle Cost

Materials	Cost (\$)
Rails	\$11,900.00
Box Culvert	\$345,600.00
Road Slab	\$348,600.00
Wing Walls	\$26,400.00
Construction	\$73,000.00
Initial Cost	\$805,500.00
Net Present	Value (NPV)
Net Present Initial Cost	Value (NPV) \$805,500.00
Net Present Initial Cost Maintenance Cost	Value (NPV) \$805,500.00 \$18,000.00
Net Present ` Initial Cost Maintenance Cost Rehabilitation Cost	Value (NPV) \$805,500.00 \$18,000.00 \$278,000.00