

Project Summary

This biogarden is designed at Crockett Elementary School in San Marcos, Texas in the Edwards Aquifer Transition Zone

The biogarden will be in the grass medium in the middle of the drive loop located at the front of the school.

Project Objective

Problem: Excess water on grass, streets, and sidewalks creating safety hazards

Solution: To improve infiltration of water with native plants, mulch, and gravel.

Main Goal: To educate people of all ages about sustainable infiltration practices.

Group Photo

Figure 1: C2.02 Members

C2.02 – Runoff Biogarden

Jadyn Gaudette (PM), Veronika Krylova, and Dustin Schulze

Faculty Advisor: Felipe Gutierrez Project Sponsor: City of San Marcos

System Design

Biogarden Components:

Length = 42 ft

Width = 22 ft

Depth = 10 in

-Mulch Top Layer = 2.5"

-Smart Gravel Layer = 3.3"

Pipe Length = 36 ft

-Gravel Layer = 3.2"

-Geotextile = 36 CF

5 Native Plant Species

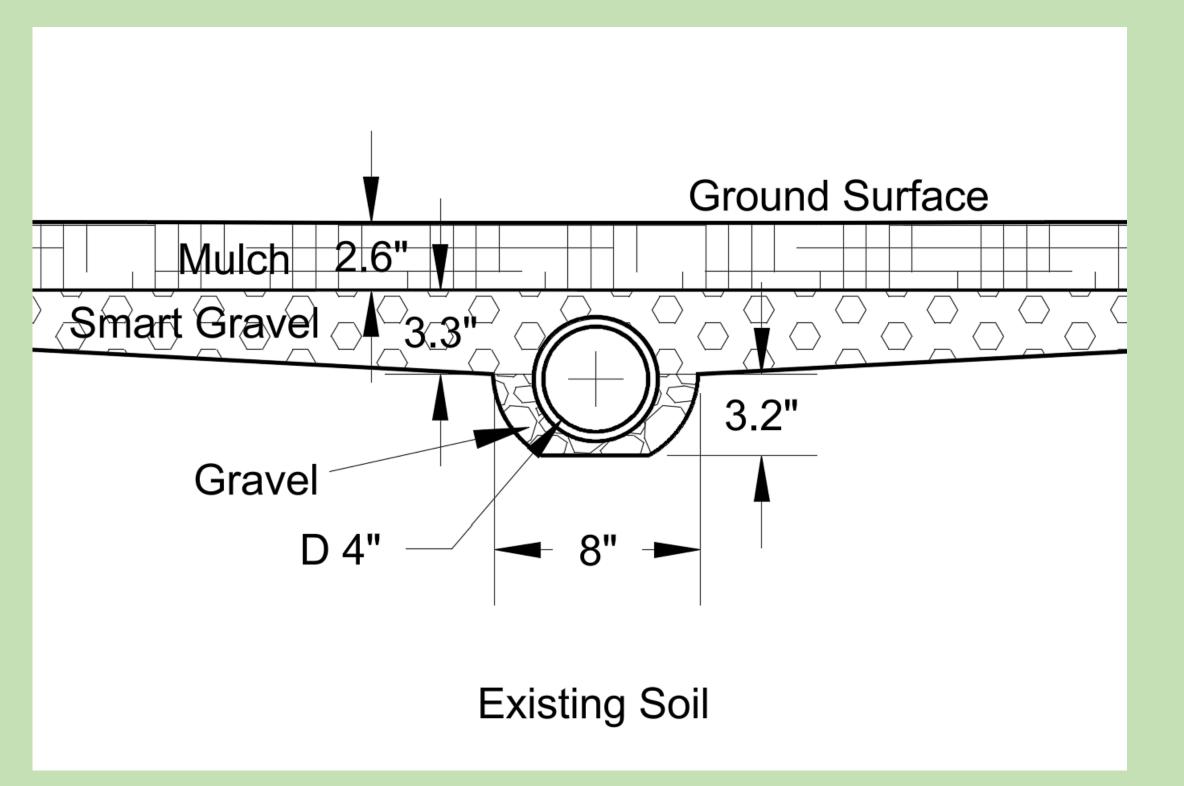


Figure 2: Biogarden Cross-Section Design

Elements Design

Soil Classification

Results: Silty Clay Loam Importance:

- Evaluates lack of infiltration of the existing soil
- Determines hydraulic conductivity to find pipe flow and pipe diameter

Hydraulic Conductivity (k) – 0.13

Perforated Pipe

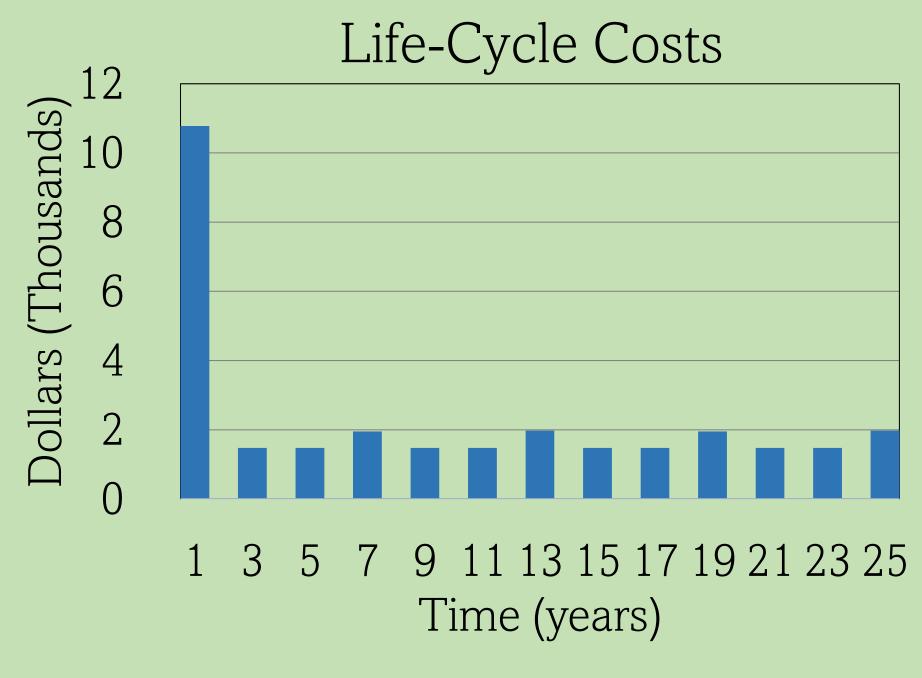
Results: 4" diameter with three rows of 3/8" holes along the top half of the pipe Importance:

- To allow water to escape in a timely manner to prevent flooding
- Handles extreme weather conditions (10-year storm)

Total Area: 9995.64 sq ft Impervious Area: 3273.55 sq	ft Clyde St		Grockett Hementary School
(32.75%) Pervious Area: 6722.09sq ft (67.25%)			
672.09	3273.55 sq pp. 3273.55 sq	1	
Strais			

Figure 3: Biogarden Drainage Area Consideration

Element	Value	Unit
Pipe Diameter for daily prec.		
Daily Average Prec.	2.92	in/day
Runoff Volume	8718.2	gal
Pipe Flow	0.45	cfs
Pipe Water Loss	0.0056	cfs
Pipe Diameter	4	in
Pipe Diameter for 10 inch storm		
10-year storm Prec.	2.92	in/hr
Chance of occuring in 25 yrs	93	%
Peak Flow (10-year storm)	0.6	cfs
Pipe Diameter	4	in
Volumetric Flow	4.41	cfs


Table 1: Element Values

SGK & Co.

Constraints

- 6" 12" allowable depth
- Surrounding Vegetation
- Soil Quality
- 48-hour maximum storage time
- No allowed subgrade compaction
- Requires full or partial sun
- 10 feet minimum distance from building

Cost Analysis

Total 25-yr Life-Cycle Cost = \$30,750

Sustainability

Envision: Low-maintenance

Biogarden

Score Improvements:
Mulch, Smart Gravel,
Gravel, and Perforated Pipe

References & Acknowledgments

- San Marcos Green Infrastructure-LID Practices
- MosquitoNix Service Organization
- Harmony in the Garden
- ASTM D 2434 Standard Method for Permeability of Granular Soils

Thank you to the Ingram School of Engineering Faculty