

E2.04 – Fire-Bot

TEXAS STATE TRANSLATIONAL HEALTH RESEARCH CENTER

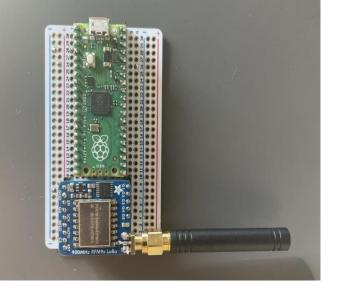
Erich Ellsworth, Aidan McSpadden, Jaxon Castillo

Sponsored by: Dr. Damian Valles and the Translational Health Research Center

Meet the Team

Erich Ellsworth
(PM)
Long Range
Communication

Jaxon Castillo
Direction
Aware Scream
Detection

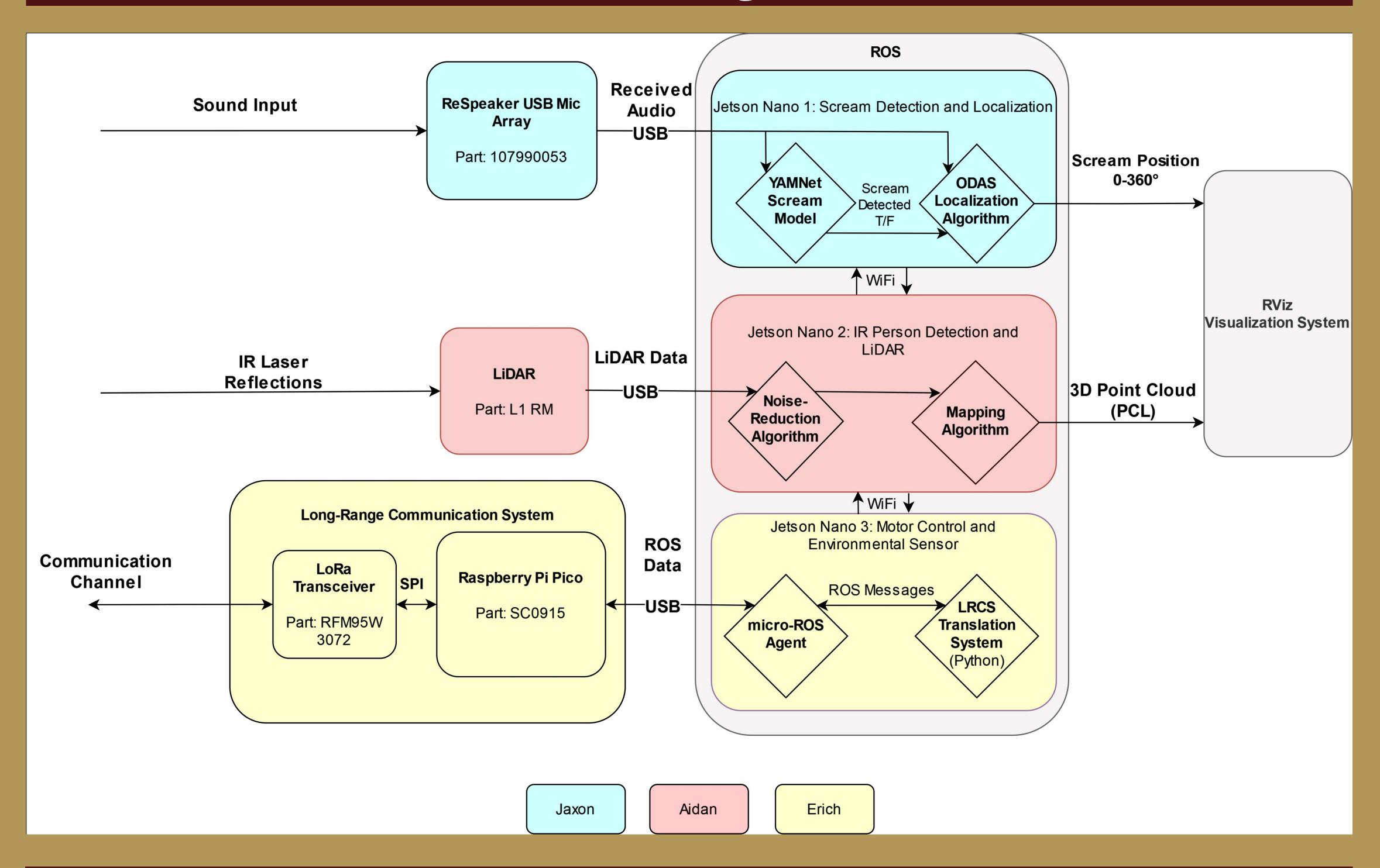

Aidan McSpadden 3D LiDAR Mapping

Project Background


- Fire-Bot is a robotic platform designed to assist firefighters locate victims inside of burning buildings.
- Our project seeks to improve Fire-Bot's capabilities by enhancing its ability to detect people, navigate buildings, and communicate to first responders.

Subsystems

- Long-Range Communication System:
 Augments Fire-Bot's WiFi based
 communication with a LoRa-based
 encrypted link.
- Direction Aware Scream Detection:
 Allow for Fire-Bot to detect direction from a heard scream.
- > 3D LiDAR Room Mapping: 3D room mapping and obstacle avoidance.


LRCS

4-Mic Array 3D LiDAR

Block Diagram

Subsystem Test Results

Test	Measured Result	Outcome
Data transmission reliability shall be greater than 75% through 1 floor.	Received 8 out of 10 ROS messages through 1 building floor. Average SNR was -13.2 dB.	PASS
Accurately translate ROS messages to and from LoRa packets.	Translated 10 out of 10 ROS messages successfully.	PASS
Direction finding reliability shall be greater than 70% (15 ft, w/ scream at 100 dB, noise 80 dB)	Found accurate direction within 20° (5 ft) 8/10 times	PASS
Scream detection reliability shall be greater than 90%	Detected 10/10 screams successfully	PASS
LiDAR Maximum and Minimum range test	Found LiDAR minimum range to be 4" in all directions and maximum 48" laterally and 70" vertically	PASS
Mapping Test	LiDAR was able to map a room using SLAM. Reliability suffered after prolonged use and sudden movements	FAIL

Requirements

- Long-Range Communication System:
 - Data transmission reliability shall be greater than 75% at 1 km Line-of-Sight.
- Data transmission reliability shall be greater than 75% through 1 floor.
- Direction Aware Scream
 Detection:
- Accurately detect direction of source relative to the rover in a noisy environment.
- Accurately detect direction of source up to 15 yards in a noisy environment.
- > 3D LiDAR Room Mapping:
- Successfully detect hazardous objects within 5 feet of front of rover.
- Map a room using SLAM while rover is in motion

Acknowledgements

- Sponsor: Translational Health Research Center.
- Faculty Sponsor & Advisor:

 Dr. Damian Valles