I1.03 Net-Zero Charging Infrastructure Design for Electric Aircraft

Problem Statement

- Propose a design solution for the establishment of a Net-Zero Charging Infrastructure for airports of a comparable size to Austin-Bergstrom International Airport (ABIA).
- Explore battery swapping and mega-charging solutions for promoting sustainable air travel.

Project Motivation

- The purpose is to lessen the carbon emissions of airplanes that run on fossil fuels as aviation accounts for 30% of global carbon footprint.
- The team will study and simulate the appropriate battery swapping and megacharging needs under turn-around time constraint.

Project Objectives

- Reduce battery inventory level by utilizing M/G/s/s Erlang-B queue model for EA aircraft wait and leave.
- Reduce mega-charging waiting time by utilizing M/M/s/∞ Erlang-C queue model for EA turn-around time.
- Minimize the annualized cost of the battery swapping and mega-charging facilities over the course of a year.

Javier Guerrero, Lauren Cravy, Alejandra Guardiola **Sponsor: Dr. Tongdan Jin, Faculty Advisor: Dr. Gerardo Trevino**

Design Approach

	Define		Measure		Analyze
 Proje Proje Proje State (SO) 	ect Statement ect Purpose ect Objectives ement of Work W)	 Simu Pro Len Que Spa Spa Pro (Wa Avera Rate Charg \$3501 	lation Testing bability of Leaving agth of Charging eue re Batteries Available bability of Charging ait Time) age Aircraft Arrival ger Cost (\$60k - k)	 Lim and com Mos mod EA I Batt Tech 	ited EA develop battery cost ponent data t up-to-date EA lelling informatio Model: Eviation ery: Beta nologies

Simulation Testing – Queueing Model M/G/s/s - Battery Swapping Process M/M/n/\circo - Mega-Charging Process

Probability of Blocked Swap

$$B(s) = \Pr\{X = s\} = \frac{\frac{(\lambda_b / \mu_b)^s}{s!}}{\sum_{k=0}^s \frac{(\lambda_b / \mu_b)^k}{k!}} = \frac{\frac{\theta^s}{s!}}{\sum_{k=0}^s \frac{\theta^k}{k!}}$$

Length of Charging Queue

$$E[N_b] = \sum_{k=0}^{s} k \Pr\{X = k\} = \frac{\lambda_b}{\mu_b} (1 - \Pr\{X = s\}) = \theta (1 - B(s))$$

Future Plans

- Once battery swap and mega-charging models are verified and validated, they will be implemented over medium-large sized airports.
- Sizing for Energy Capacity of Wind Turbine and Photovoltaic System for Net-Zero airport (Spring 2025).
- Cost Minimization of Net-Zero Infrastructure for EA (Spring 2025).

Measure

Probability of Mega-Charging Waiting

$$C(n,s) = \frac{\left(B(s)\lambda_b / \mu_d\right)^n}{n!\left(1 - B(s)\lambda_b / (n\mu_d)\right)}$$

$$\frac{\left(B(s)\lambda_b / \mu_d\right)^k}{\sum_{k=0}^{n-1} \frac{\left(B(s)\lambda_b / \mu_d\right)^k}{k!} + \frac{\left(B(s)\lambda_b / \mu_d\right)^n}{n!\left(1 - B(s)\lambda_b / (n\mu_d)\right)}$$

Total Mega-Charging Service Time

$$t_{schg} = t_q + t_c = \frac{C(n,s)}{n\mu_d - \lambda_d} + \frac{1}{\mu_d}$$

TEXAS STATE

INGRAM SCHOOL OF ENGINEERING

Human Factors/Ethics

Electricity Safety Factor • Shipping and handling of battery • Swapping Battery Weight Mega Charger Safety Guideline

Climate Justice - Net-Zero Emissions Environmental Justice - Noise Reduction Power Resilience - Less Maintenance

Analyze

Sattery Manufacturer & Developer	Battery Name & Tech		
Electro Aero	Electro Aero RAPID 240		
Beta Technologies	Beta Charge Cube		
Pipistrel	Pipistrel SkyCharge M20		

Future Customers

• All Airports • Electric Manufacturers Aviation Battery Manufacturers Mega-Charging System Manufacturers

Team Members

Alejandra Guardiola (left) Javier Guerrero (middle), Lauren Cravy (right)

References Information

Doctor, F., Budd, T., Williams, Paul. D., Prescott, M., & Iqbal, R. (2022). Modelling the effect of electric aircraft on airport operations and infrastructure. Technological Forecasting and Social Change, 177(121553), 121553. https://doi.org/10.1016/j.techfore.2022.121553