

INGRAM SCHOOL OF ENGINEERING

Meet the Team

Luke Scarpato

Lisette Lugo

Lilly Martinez

Project Overview

<u>Goal</u>

 Conduct a System Impact Study for integrating a 5 MW solar PV generator into a 24 kV distribution network.

Objective

 To study the impacts of interconnecting a 5 MW solar generator to a 24kV distribution system, focusing on stability, safety, and compliance.

Tools Used

 Simulations are performed using Milsoft WindMil to evaluate load flow, short circuit, and flicker levels both before and after PV integration.

Project Requirements

PV Generator

• Evaluate impact from PV generation fluctuations to meet flicker standards.

Interconnection

- Conduct short circuit analysis.
- **24kV Distribution System**
- Perform load flow and post-integration load flow to detect voltage violations.

Project Objectives

- Analyze the PV generator's effect on the distribution network.
- Maintain voltage stability and avoid overloads or unacceptable flicker levels in the system.
- Ensure the PV generator's integration enhances grid resilience and supports reliable power delivery during varying demand conditions.
- Identify necessary upgrades or mitigations to meet safety and regulatory standards.

E1.02 - L³ Energy

Luke Scarpato, Lisette Lugo, Lilly Martinez System Impact Study of Photovoltaic Generator into 24kV Distribution System

Overall Block Diagram

Load Flow Analysis Flowchart

Flicker Analysis Flowchart

On-Peak Pre-Project

On-Peak Post Project

Short Circuit Analysis Flowchart

Test Cases

Base Case Scenario		
	Off Peak	Peak
System Load	3 MVA	8 MVA
Substation Voltage	120 VLL	126 VLL
Regulator Voltage	120 V	126 V

PV Integration Peak Scenario		
Location	South	Central
System Load	8 MVA	8 MVA
Substation Voltage	126 VLL	126 VLL
Regulator Voltage	126 V	126 V
PV Generator Power	8 MVA	8 MVA

Acknowledgements

Thank You:
Faculty Advisor: Dr. Billy Diong
Sponsor: TRC