

INGRAM SCHOOL OF ENGINEERING

Problem Statement

The team will design a wastewater treatment plant for the town of Horquetas, Costa Rica. Some challenges for the project include the city's mountainous terrain, seasonal tourism, population growth, and affordability. The project will replace households' individual septic systems. The community needs a centralized system to stop septic tank effluents from being washed away by runoff.

C2.04 – Horquetas Wastewater Treatment Plant

Franklin Juarez, Andrew Webb, Christian Guerrero, Taylor Laramore Dr. Felipe Gutierrez

V=velocity g=gravity acceleration P= pressure

Structural Element

Concrete Mix Design

Component	28-day f'c (psi)	Max Water- Cement Ratio	Maximum Size Aggregate (in)
Bar Screen	4000	0.40	3/4
Grit Removal	5000	0.38	3/4
Aeration Basin	4000	0.40	3/4
Clarifier	4000	0.40	3/4
Storage Tank	5000	0.38	3/4

Type II and V Portland Cement were considered viable options for our component mix designs as they are sulfate resistant, mitigating possible sulfate attacks from wastewater and soil. Fly ash is also a recommended additive in our mix designs to reduce permeability. Additional admixtures such as corrosion inhibitors, chemical resisting inhibitors, and abrasion resistors were added in certain component mixes to help with their respective challenges.

Using a design period of 50 years with 4% discount rate and referencing bids from contractors to build the similarly sized WWTP in Kyle, Texas, FACT estimates the following:

Collection System Construction = \$18 million Construction of Horquetas WWTP = \$30 million 50-Year Operation & Maintenance = \$75 Million Rehabilitation = \$1.4 million Salvage Value = \$4.7 million

Net Present Value, NPV = 48 + 75 + 1.4 - 4.7 =**\$119.7 Million**

Constraints & Standards

- Practice No. 60
- ACI 318-19
- ACI 350-06-1

 $z_1 = z_2 + h_L$

$z_1 = WSE \text{ at Point } 1$ $z_2 = WSE at Point 2$ $h_L = Total Head Loss$

Sustainability					
Submitted Score Information					
it ory	Applicable	Submitted	Percentage		
f Life	156	54	35%		
ір	182	65	36%		
1	196	67	34%		
Vorld	170	68	40%		
nd e	170	56	33%		
	874	314	36%		
Life Cycle Cost Analysis					

• 30 Texas Administrative Code (2020). ASCE Manuals and Reports on Engineering

• Effluent Wastewater Requirements