

INGRAM SCHOOL OF ENGINEERING

TEXAS STATE

Project Summary

In response to the continuous population growth in Hays County and the advantageous real estate market relative to the City of Austin, our project aims to develop a 25-acre site in San Marcos into a dynamic industrial warehousing complex. Strategically positioned along the IH-35 corridor, our complex will offer over 300,000 square feet of gross floor area and cater to the rising demand for workforce employment projects. Our goal is to design a complex that helps meet this demand, and to contribute to the economic vitality of the region.

Constraints

Building setbacks Driveway width & spacing Parking requirements Fire code requirements Truck docking depths Detention pond requirements ADA accessibility requirements Water & wastewater utility locations

Design Considerations

- San Marcos Development Code
- International Fire Code (IFC)
- TxDOT Roadway Design Manual
- Texas Commission on Environmental Quality

Sustainability

LEED Framework – Gold Status

Category	Gained Points	Total
Location & Transportation	11	/16
Sustainable Sites	7	/10
Water Efficiency	9	/11
Energy & Atmosphere	15	/33
Materials & Resources	5	/13
Indoor Environmental Quality	12	/16
Innovation	1	/6
Regional Priority	0	/3
Totals	60	/110

C2.06 – Dynamic Industrial Warehousing Complex

Michael Harrell (PM), Chris Coronilla, Stephen Gipson, Kyle Grevsmuehl **Faculty Advisor: Dr. Felipe Gutierrez Special Thanks: Ian Roberts, Brad Slott, Jordan Schaefer, and Kimley Horn**

System Design

Our group decided on the following aspects for our system design:

 \bullet

- Flood Zone
- Allocated Parking
- Impervious Cover
- Building Setbacks Roadway Design
- Site Drainage

Element Design

Pavement Design

- Recommendations
- 6.5-inch RC pavement minimum (#3 bar)
- 4-inch flexible base
- 6-inch subgrade
- 1.5% minimum slope
- Square panels
- Dowelled joints

Subgrade Subbase or bas

Traffic Type	ACI 330 Traffic Spectrum	Portland Cement Concrete	Flexible Base
Passenger Vehicles Only	Α	5.0 in.	4 in.
Up to 50 Heavy Trucks/Day	D	6.0 in.	4 in.
Up to 100 Heavy Trucks/Day	D	6.5 in.	4 in.

- pond or grates
- Drain away from buildings and structures towards
- Establish FFEs for buildings that make sense with the natural elevation of the site

- Utility Design
- Earthworks
- Water Sewer
- Geotechnical Report Tree & Habitat Protection

Site Grading

- Major considerations for Site grading Leveled Site
- Minimize retaining wall elevation on back end of site

Capital/Life Cycle Costs

Capital Costs				
A. Pavement and Misc. Row	\$13,600,000			
3. Building Construction	\$31,100,000			
C. Onsite Water Utility	\$1,050,000			
D. Wastewater Utility	\$400,000			
E. Stormwater Management	\$1,050,000			
F. Franchise Utilities	\$200,000			
Subtotal	\$47,400,000			
Contingency (20%)	\$9,500,000			
Total	\$56,900.000			

Life Cycle Costs				
nitial Cost	\$56,850,000			
Annual Maintenance Cost	\$200,000			
Rehab Cost (every 10 years	s) \$4,250,000			
Salvage Value	\$20,650,000			
Analysis Period	40 years			
Net Present Value (NPV)				
With Sustainable	Without Sustainable			
Features	Features			
\$70,950,000	\$62,700,000			

Team Photo

Team members from left to right: Kyle Grevsmuehl, Michael Harrell, Chris Coronilla, Stephen Gipson