

INGRAM SCHOOL OF ENGINEERING

INTRODUCTION

Our senior design project collaborates with Argent Automation, a pioneer in automation technology known for the patented **Synchronic Drive**. This innovative gear reducer provides unique advantages, such as zero-backlash, high stiffness, and energy efficiency, offering cutting-edge solutions for OEM and servo motor applications.

U.S. 11,761,517

MANUFACTURING PLAN

- > Received 3D model and functionality details from sponsors; reviewed design, and material selections
- Create a cost-effective 3D-printed prototype and assemble it for initial evaluation
- ➤ Use 3-axis and 5-axis CNC machining, with waterjet and band saw support;
- Test CNC code on REM shapes and wood to ensure precision.
- > Assemble parts and conduct functional tests to validate the expected results.

Material Selection

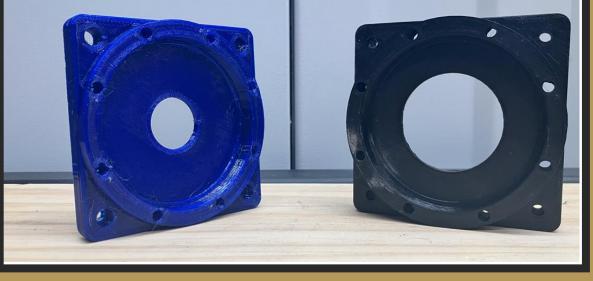
Prototyping Materials:

•**PETG** for FDM (Fused Deposition Modeling) parts due to its durability and ease of use.

•Chitu Conjure Tough ABS-like Resin for SLA (Stereolithography) parts, providing high precision and toughness.

•REN Shape and Wood used to test CNC code, reducing costs, preventing tool damage.

Final Material Selection:


•4140 Steel for input and output disks due to its high fatigue strength and abrasion resistance, ideal for load-bearing parts. •1018 Steel for housing and index plates, chosen for its machinability and durability, ensuring long-term structural reliability.

M2.05 – Synchronic Drive

Aidan Hardy, Josiah David, Udaya KC

Argent Automation

3D PRINTING AND PROTOTYPING

We created 3D printed prototype of all the parts that we are required to machine.

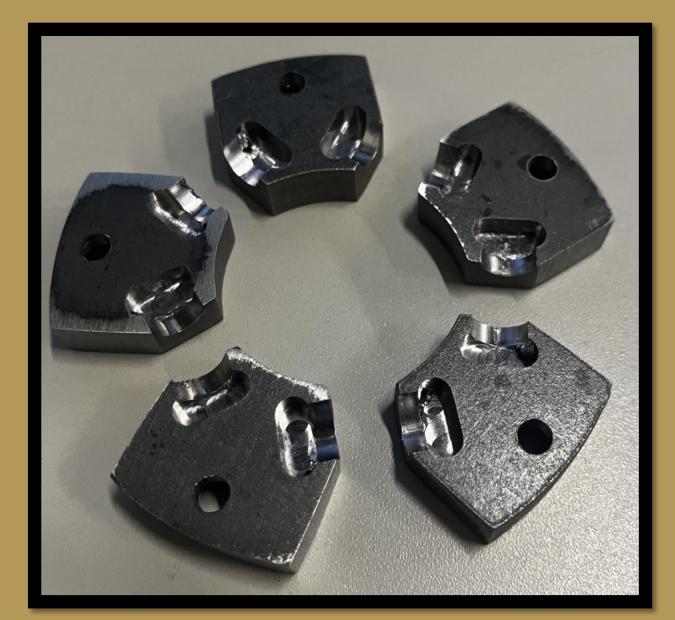
> We used the Craft Bot XL's in the makerspace to make the Index Plates, and housing with PETG filament > Due to the intricacy of the input and output discs, we opted to use an "Elagoo Mars 2" resin printer with "Chitu Systems" Conjure Tough ABS like Resin".

Items Manufactured

AFT Block, FWD Housing

Mounting points connecting the input motor to the output shaft. Created using CNC 3 axis after testing CNC code with wood **Input and Output Discs**

These components work in tandem to reduce the speed of the driving motor and convert it to torque. Created using 5 axis CNC machining. **Index Plates**


Midpoints that holds the needle nose bearings that connects the input and output discs and allows them to work in tandem.

Assembly and Working principles

Max Gear Ratio 16:1 Max Contact force 1111 lbf Max Contact Stress 55506.9 psi Max Output **1100.67 in-lb/124.36 Nm**

Challenges & Solutions

Original design for Index_Plate_F had extremely thin outer walls which lead to near impossible machining operations. To compile with design for manufacturing standards and reduce replacement cost

Custom vise required for Index_Plate_F to meet tolerance specifications

> Input disk required a specialized tool holder due to steep angle of 5-axis cuts on internal surface

> Design change on internal width on input disk to account for power disks

> Fine tuning feeds and speeds especially for operations with 1/8" endmills.

Conclusion and Final Recommendations

> Lead time for shipping parts and tools is extremely important and effects machining timelines far more than design choices

> Proper file management can save hours of labor from being repeated

 \succ Testing code on wood and ren shape was a good cost-effective decision

 \succ Verifying toolpaths with simulations and peers can save lots of time and tools.

Acknowledgements

> Ingram Hall Makerspace and its staff

➢ Brain Earl for all his assistance in 5-axis operations > Mark Summers and Dr. Mohammad for guided the team as our instructors this last year

> Harrison Thramann, for providing an ear and keen mind throughout all our engineering struggles

Aidan Hardy

