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SUMMARY Understanding the dynamic adaptive plasticity of microorganisms has 
been advanced by studying their responses to extreme environments. Spaceflight 
research platforms provide a unique opportunity to study microbial characteristics 
in new extreme adaptational modes, including sustained exposure to reduced forces 
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of gravity and associated low fluid shear force conditions. Under these conditions, 
unexpected microbial responses occur, including alterations in virulence, antibiotic and 
stress resistance, biofilm formation, metabolism, motility, and gene expression, which are 
not observed using conventional experimental approaches. Here, we review biological 
and physical mechanisms that regulate microbial responses to spaceflight and space­
flight analog environments from both the microbe and host-microbe perspective that 
are relevant to human health and habitat sustainability. We highlight instrumentation 
and technology used in spaceflight microbiology experiments, their limitations, and 
advances necessary to enable next-generation research. As spaceflight experiments 
are relatively rare, we discuss ground-based analogs that mimic aspects of microbial 
responses to reduced gravity in spaceflight, including those that reduce mechanical 
forces of fluid flow over cell surfaces which also simulate conditions encountered 
by microorganisms during their terrestrial lifecycles. As spaceflight mission durations 
increase with traditional astronauts and commercial space programs send civilian crews 
with underlying health conditions, microorganisms will continue to play increasingly 
critical roles in health and habitat sustainability, thus defining a new dimension of 
occupational health. The ability of microorganisms to adapt, survive, and evolve in the 
spaceflight environment is important for future human space endeavors and provides 
opportunities for innovative biological and technological advances to benefit life on 
Earth.

KEYWORDS spaceflight, mechanotransduction, mechanobiology, microgravity, 
habitat, astronaut, spacecraft, fluid shear

INTRODUCTION

Overview of spaceflight microbiology for human exploration

R egardless of environmental conditions, microorganisms accompany humans 
wherever they travel, including on space missions. Accordingly, microorganisms 

are as essential to support human health and habitat sustainability during space travel 
(whether in deep space or on planetary or lunar surfaces) as they are on Earth, including 
disease prevention, clean air and potable water, reduced power consumption, conserva­
tion of resources, and in situ resource utilization (Fig. 1). As microorganisms are highly 
adaptable and responsive to extreme environments, understanding the impact of the 
spaceflight environment on microbial function, adaptation, and diversity is critical to 
successfully support and sustain human activities in space. This is especially pertinent 
given the myriad of unexpected microbial molecular and phenotypic responses that 
have been reported under both spaceflight and spaceflight analog conditions (1–3).

While microorganisms experience a variety of environmental and potentially 
synergistic stressors during spaceflight—including elevated radiation, increased CO2, 
reduced atmospheric pressure, altered circadian rhythms, and confined spacecraft 
habitats with regenerative life support systems—the hallmark condition during 
spaceflight missions is sustained exposure to the reduced force of gravity. As life evolved 
on Earth, a multiplicity of changes in physical and chemical factors invoked adaptations 
and participated in the complicated selection process. However, the force of gravity on 
all terrestrial life has been constant for 4.8 billion years and has shaped the architecture 
and function of all biological systems on our planet. Therefore, there is little or no genetic 
memory of life responding to force changes in the low gravity range.

Microorganisms cultured in the reduced gravity environment in low Earth orbit (LEO) 
space habitats [e.g., Space Shuttle, International Space Station (ISS)] have often shown 
novel and unexpected responses as compared to when studied using conventional 
culture conditions in terrestrial laboratories, where the force of gravity can mask subtle 
but important microbial responses. These responses include alterations in virulence and 
host-pathogen interactions (4–8), biofilm formation (9, 10), antibiotic resistance (11, 12), 
growth kinetics (13), cell morphology (14–16), motility (17, 18), and global 
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reprogramming of gene expression (5, 8, 14). In addition, alterations in the microbiome 
of astronauts (19, 20) and reactivation of latent viruses have been reported (21–26), 
which has sparked questions into the potential health implications of these changes (22, 
24, 25, 27, 28). Indeed, in combination with evidence of immune dysfunction of astro­
nauts during spaceflight (29–33), spaceflight-induced alterations in microbial characteris­
tics suggest an increase in the risk of infectious disease and other microbial health risks 
during spaceflight missions. As discussed later in this review, the microbiome of astro­
nauts has additional implications for the success of exploration missions, due to its 
influence on the spacecraft environmental microbiome composition, including regenera­
tive life support systems (34–36).

Throughout the history of spaceflight microbiology research, compelling evidence 
has repeatedly demonstrated that the spaceflight environment alters a variety of key 
microbial properties (Table 1). As the number of important spaceflight and spaceflight 
analog microbial studies has increased dramatically in both quantity and diversity over 
the past 25 years, this review will focus solely on key microbial studies from these 
platforms that have direct implications for human health and habitat sustainability 
(Tables 1 and 2). For spaceflight-induced alterations in other microbial areas, including 
astrobiology and planetary protection, the reader is referred to several excellent review 
articles that have been written on these topics (37–41).

Central role of microbiology throughout the history of human space 
exploration

Present-day spaceflight microbiology research and discoveries have resulted from a 
series of progressive advances over the past six decades. To understand the chronology 
and context of current spaceflight microbiological research and its experimental design, 
it is important to understand early findings that served as the foundation to stimu­
late subsequent studies. Our understanding of high-altitude, spaceflight microbiology 
began as early as 1935 with ballooning experiments designed to evaluate the ability of 

FIG 1 Microbial interactions during human spaceflight missions. When humans, animals, plants, and their associated microbes travel to the moon, they will 

encounter unique combinations of stressors, including lunar regolith and reduced gravity. The dynamic interactions that take place between these living 

organisms and non-living surfaces will alter core biological characteristics that could profoundly alter cellular survival, stress responses, and/or disease risks.
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TABLE 1 Notable microbiological spaceflight events and research

Year Description Reference

1970a An Apollo 13 astronaut suffered a severe Pseudomonas aeruginosa urinary tract infection during this deep space mission, 
demonstrating risk to crew health and importance of understanding infectious disease during spaceflight

(48)

1977a Enhanced inflammatory responses observed in animal lesions after ground-based infection with S. cerevisiae which had been 
exposed to deep space irradiation during Apollo 16 as compared to ground control cultures

(49)

1982 Spaceflight-cultured Staphylococcus aureus and Escherichia coli exhibited increased resistance to antibiotics compared to 
ground control cultures

(50, 51)

1997 Evaluation of E. coli growth kinetics from multiple spaceflight experiments indicated alterations in lag and exponential growth 
phases, and final cell density as compared to ground control cultures.

(13)

1997 Enhanced colonization of plants in spaceflight by the opportunistic fungal pathogen, Neotyphodium, as compared to ground 
control cultures

(52)

1999 Investigations of Bacillus subtilis and E. coli using liquid and semi-solid growth media suggested differences in microbial 
responses observed during spaceflight may be due to external physical forces, e.g., fluid dynamics and/or extracellular 
transport

(53)

2001 First reports of experimental microbial biofilm formation in spaceflight (10, 54)
2001 Spaceflight enhanced the ability of the obligate fungal pathogen Phytophthora sojae to colonize and cause disease symptoms 

in soybeans as compared to ground control cultures
(55)

2005 Enhanced latent herpes viral reactivation and shedding by astronauts during spaceflight (25)
2007 First report that the microgravity environment of spaceflight altered the virulence and global gene expression of a microbial 

pathogen, S. Typhimurium, as compared to ground control cultures, confirming previous observations with this pathogen in 
the rotating wall vessel (RWV) and the transcriptomic and proteomic response of a bacterium to spaceflight. This study also 
identified the RNA chaperone protein, Hfq, as a master regulator of the spaceflight response

(5)

2008 Increased S. Typhimurium virulence in response to spaceflight culture was independently validated on a separate Space 
Shuttle mission. This study also showed altered virulence observed in spaceflight was dependent upon media ion concentra­
tion and that phosphate ion regulated key stress responses

(6)

2011 Similar to S. Typhimurium, P. aeruginosa cultured in spaceflight exhibited global alterations in gene expression, including Hfq 
and its regulon, as compared to ground control cultures, and confirmed that Hfq is a spaceflight-induced regulator acting 
across bacterial species.

(8)

2013 Spaceflight-cultured Candida albicans exhibited global changes in gene expression, random budding, and enhanced cellular 
aggregation as compared to ground control cultures

(14)

2013 Unique “column and canopy” biofilm architecture observed in P. aeruginosa cultured in spaceflight. Role for flagella demon­
strated in the biofilm architecture formed in spaceflight-cultured bacteria

(9)

2019 Use of ISS spaceflight microbial isolates from astronauts to characterize the impact of long-duration spaceflight missions on 
skin, saliva, nostril, and fecal microbiomes

(19)

2019 Genomic and phenotypic characterization of virulence properties using Fusarium oxysporum isolates from the ISS (56)
2019 A multidimensional analytical comparison between the microbiome of an astronaut during a year-long spaceflight mission 

and his identical twin on Earth
(57)

2020 Second report of a pathogen, Serratia marcescens, that displayed increased virulence during spaceflight (7)
2020 Extensive characterization of six bacterial species collected from the ISS potable water system to understand multispecies 

interactions and contributions of each microorganism to biofilm development and stability. Loss of community biofilm 
formation was dependent on dual-species removal, suggesting synergistic interactions between species is necessary for 
robust biofilm formation

(58)

2020 Genomic and phenotypic characterization of Burkholderia isolates from ISS potable water indicated their pathogenic 
properties may be similar to the same species on Earth. Studies included antibiotic resistance, biofilm formation, hemolysis, 
and macrophage survival

(59)

2021 First infection of human cells in spaceflight and use of dual RNA-Seq to profile both the host (3-D intestinal cell cultures) 
and pathogen (S. Typhimurium) transcriptomic responses when both were simultaneously exposed to the spaceflight 
environment

(4)

2021 Longitudinal phenotypic characterization of 16 bacterial species isolated from ISS potable water over multiple years indicated 
bacterial adaptation over time in this ecosystem. Studies included antimicrobial resistance, biofilm structure and composi­
tion, hemolysis, and carbon utilization

(60)

aDeep space missions correspond to those beyond LEO and have different types of radiation, fractional gravity, and other environmental factors which can impact biological 
responses.
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microorganisms to survive decreased pressure and increased radiation (42–44). In the 
1950s, our knowledge continued to expand with almost 30 ballooning and sounding 
rocket experiments (43). During the late 1950s and early 1960s, the USSR employed 
Sputnik satellites at higher altitudes to perform microbiological experiments primarily to 
help determine the safety of spaceflight for humans (43, 44). The National Aeronautics 
and Space Administration (NASA) not only performed microbiological research on 
satellites, such as Discoverer XVII and Biosatellite 2, but also incorporated crewed 
spacecraft, during the Gemini and Apollo Programs, which permitted greater experimen­
tal interaction and complexity (43, 44). From these early missions, the ability to perform 
increasingly complex experiments (42) continued to increase with the construction and 
launch of more sophisticated spacecraft both with the Soviet, and subsequent Russian, 
efforts through the Salyut and Mir space stations (43) and the NASA Skylab and Space 
Shuttle programs (43, 45–47). These efforts have culminated in the development and 
operation of the single largest space research platform to date, the ISS, a collaborative 
research platform in LEO between NASA, the European Space Agency (ESA), the Russian 
Space Agency (Roscosmos), the Canadian Space Agency, and the Japan Aerospace 
Exploration Agency (JAXA).

Over the past two decades, the number and complexity of spaceflight experiments 
have been dramatically increased with the assembly of the ISS, with nearly 3,000 
experiments having been performed (76, 77). Having operated continuously for over 

TABLE 2 Notable microbial spaceflight analog research

Year Description Reference

1997 First use of RWV bioreactor to study microbial responses to the spaceflight analog environment and the first evidence that 
bacterial responses to this environment are related to fluid shear in the medium. These studies used a variety of environmental 
bacterial isolates

(61–63)

2000 First report that physical forces are an environmental signal that regulates microbial virulence. Specifically, low fluid shear culture 
in the RWV bioreactor altered S. Typhimurium virulence, stress resistance, and gene expression

(64)

2002 First transcriptomic analysis of a spaceflight analog-cultured microorganism. RWV-cultured S. Typhimurium exhibited global 
reprogramming of gene expression compared to control conditions. Phenotypic validation of transcriptomic results confirmed 
reduced LPS biosynthesis and a role for the iron transport protein, Fur, in the LSMMG response

(65)

2006 First study of bacterial biofilms in the RWV. Thicker E. coli biofilms and increased antibiotic resistance observed in LSMMG as 
compared to control cultures

(66)

2007 Computational modeling of fluid shear levels in the RWV demonstrated a progressive relationship between applied fluid shear 
and bacterial gene expression and pathogenic stress responses. This study also demonstrated a correlation between low fluid 
shear levels experienced by pathogens in both the quiescent microgravity environment of spaceflight and the RWV with those 
naturally encountered in the infected host

(67)

2008 P. aeruginosa cultured in the RWV affected biofilm formation, rhamnolipid production, and quorum sensing as compared to 
control conditions

(68)

2011 LSMMG culture of S. aureus in the RWV altered transcriptomic profiles and pathogenic phenotypes, including biofilm formation, 
antibiotic resistance, and carotenoid production. This study also indicated a role for Hfq as a master regulator of the LSMMG 
response, suggesting a common regulatory motif between Gram-positive and previously observed Gram-negative responses

(69)

2013 RWV culture alters host-commensal microbe interactions in the squid-Vibrio fischeri model system as evidenced by altered innate 
immune responses and light organ development

(70)

2013 Rhodospirillum rubrum, a key organism proposed for use in future spacecraft regenerative life support systems, exhibited 
widespread transcriptomic, proteomic, and metabolomic alterations when cultured in the RWV, including increased levels of 
quorum sensing molecules and pigment production

(71)

2016 Closely related S. Typhimurium pathovars exhibited different virulence profiles in response to LSMMG culture in the RWV (72)
2022 In response to 100-day RWV culture, S. mutans developed variants with altered heritable phenotypes such as adhesion and acid 

tolerance
(73)

2022 LSMMG cultures of S. Typhimurium display enhanced colonization (adherence, invasion, intracellular survival) in a 3-D co-culture 
model of human colonic epithelium containing macrophages. Global transcriptomic responses of host and pathogen aligned 
with infection phenotypes

(74)

2023 RWV culture altered S. aureus membrane lipid profiles and increased its sensitivity to membrane-disrupting antimicrobial 
compounds

(75)
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20 years, the ISS has enabled the most sophisticated and complex spaceflight microbiol­
ogy research to date. Indeed, the completion of the ISS research platform has enabled 
a dramatic increase in spaceflight microbiology research publications over the past 
decade. This increase in microbiology research is expected to grow exponentially as 
(i) sovereign nations launch new government-operated space stations in LEO (e.g., 
China), as well as in deep space orbiting the moon (e.g., United States and interna­
tional partners) that will be inhabited by professional astronauts, and (ii) the efforts 
of the rapidly emerging commercial spaceflight community (e.g., SpaceX, Blue Origin, 
Axiom Space, Nanoracks, Northrup Grumman, and Lockheed Martin) that will send 
civilians into space on a more frequent basis. The broad array of microbiology research 
capabilities and capacity is expected to further increase, as new commercial human-
rated spaceflight platforms are deployed (2). Notably, the vast majority of spaceflight 
microbiology experiments have been short duration in length and performed inside the 
pressurized habitable volume of the spacecraft. However, as inflight research capabilities 
and infrastructure mature from the limitations associated with the current spaceflight 
biological research paradigm, it will be important to understand long-duration responses 
of the spaceflight environment on microbial adaptation and survival.

In this review, we focus on key spaceflight and spaceflight analog microbiological 
research, as well as the technology platforms that enabled these studies, which directly 
impact human health and space habitat sustainability. The results of these investigations 
are helping to define a new dimension of occupational health for traditional astronauts 
during exploration, professional astronauts in military and commercial activities, and 
civilian astronauts who are expected to become an increasing portion of the space-trav­
eling community.

Mechanobiology of microorganisms and relevance to spaceflight

Mechanobiology is a multidisciplinary field that combines biology, physics, and 
engineering to study how prokaryotic and eukaryotic cells sense and respond to 
mechanical/physical forces (e.g., fluid shear, compression, stretch) in their microenviron­
ment. The ability of cells to sense and respond to their physical force environment 
is an evolutionarily conserved and universal process in all life forms that allows cells 
to dynamically adapt and respond to changing conditions by converting mechanical 
force cues into biological responses and is a major regulator of cellular physiology, 
including the transition from normal homeostasis to disease pathologies (1, 78–83). The 
concept that physical forces and cellular mechanics play a central role in the regulation 
of biological form and function is often attributed to the pioneering work of Scottish 
mathematical biologist D’Arcy Thompson, whose classic 1917 treatise “On Growth and 
Form” was a foundational contribution to the field (84). Despite this realization over a 
century ago, the ability of microbial cells to sense and respond to their physical force 
environment remains a relatively unexplored and emerging frontier. Recently, however, 
the American Society for Microbiology and the National Academies of Science have 
identified the fields of microbial mechanobiology and host-microbial mechanobiology 
and associated phenotypic plasticity in terrestrial and space-based settings as one of 
the top fields that will define and advance the future of microbial sciences for the next 
decade (85, 86).

Mechanical forces in prokaryotic and/or eukaryotic microbial cells can be sensed 
by a variety of mechanosensitive structures, especially those on the cell surface (e.g., 
flagella, fimbriae, outer membrane proteins, extracellular polymeric compounds like 
capsules, and biofilms) (1, 80, 87–91), which are then transmitted to the DNA through 
the interconnected cytoskeletal network within the cell, as well as through the opening 
and closing of mechanosensitive stretch-activated ion channel proteins (92). Several of 
these mechanosensing structures have analogs in mammalian cells. This process causes 
mechanical forces to be transduced to initiate signal transduction and biochemical 
cascades which alter gene expression and functional phenotypes (collectively referred 
to as mechanotransduction) that regulate the transition between normal homeostasis 
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and disease or other abnormal states (1, 78–83). For example, microorganisms experi­
ence wide fluctuations in fluid shear levels in their natural environments, including 
their respective animal and plant hosts, water systems, and industrial settings. Indeed, 
the mechanical force of fluid shear is known to regulate a broad range of microbial 
phenotypes, including virulence (5, 64, 72), stress responses (1, 3, 5, 64, 66–69, 72, 93–
103), antibiotic resistance (66, 69), metabolism (61, 62, 80, 93, 103, 104), biofilm formation 
(105–110), motility (18, 111, 112), and colonization of host cells and tissues (74, 102, 113).

While mechanical forces have long been recognized as vital in regulating the dynamic 
plasticity critical for both cell and tissue function in mammalian cells [e.g., morphology, 
proliferation, survival, metabolism, migration, differentiation, disease pathologies; we 
refer the reader to several excellent reviews on this topic (81, 82, 114–118)], only recently 
has the importance of how physical forces shape microbial behavior and physiology 
begun to be more widely appreciated by the microbiology community. Just as for other 
environmental stressors, physical forces like the flow of fluid over the surface of microbial 
cells (fluid shear) are used as a barometer by cells to provide cues to their environmen­
tal location (in vivo or ex vivo) which leads to corresponding adaptive molecular and 
phenotypic changes to enhance fitness (1, 3, 64, 109, 119, 120). While progress has 
been made in understanding the mechanosensory response of microbial cells to physical 
forces (1, 3, 5, 6, 67, 72, 74, 92, 99, 121–123), the mechanisms underlying how these 
forces regulate functional plasticity of microbial cells remains incomplete.

The concept that microbial cells actively sense, respond, and adapt their gene 
expression and physiology to their mechanical force environment is not new, and 
microbial mechanobiology has been well documented for several decades (1, 3, 67, 
93, 121, 124). Indeed, microbial cells experience a variety of physical forces, including 
fluid shear, in their natural settings in both biological and abiotic environments. For 
historical context, several notable examples are briefly discussed. The study of biofilms 
was one of the earliest examples of the microbiology community appreciating the role 
of physical forces on bacterial behavior. Many publications have long documented the 
relationship between hydrodynamic fluid shear forces and microbial biofilm properties 
on inert surfaces, including motility, surface attachment, growth, metabolism, communi­
cation, morphology, and gene expression (80, 105, 107–109, 119, 123, 125, 126). Recently, 
studies using in vitro mammalian cell cultures have indicated that mechanical forces 
of fluid flow can also regulate bacterial adhesion to biological surfaces (74, 99, 127). 
Much progress has also been made in understanding how microbial cells use mechano­
sensitive stretch-activated ion channel (Msc) membrane proteins to respond to abrupt 
changes in osmotic (turgor) pressure. In response to hypo-osmotic shock, increased 
tension is placed on the lipid cell membrane which causes Msc channels to transition 
from closed to open confirmation, thereby allowing the release of ions and other cellular 
solutes to prevent bacterial cell lysis (91). In addition, foundational contributions to the 
“mechanobiology of infectious disease” were made in 2000 and 2007 with the finding 
that fluid shear forces relevant to those encountered in the infected host, as well as 
in the microgravity environment of spaceflight, altered the virulence of the enteric 
pathogen, Salmonella Typhimurium in unexpected ways that were not observed when 
the organism was cultured under conventional lab conditions. These were the first 
reports that a physical force could alter microbial virulence (5, 64).

Microbial cells are constantly subjected to changes in their environmental condi­
tions. Their survival requires the ability to mount swift responses to adapt to these 
dynamic conditions, including alterations in pH, temperature, osmotic and oxidative 
stress, nutrient availability, and physical forces, regardless of whether they are swim­
ming/floating freely in fluid suspension (planktonic) or adhered to surfaces (sessile). 
Each of these environmental conditions (alone or in combination) represents ecosystem 
niches for adaptation and evolution of microbial species and communities (128). While 
microbial responses to many of these environmental stressors have been well studied, 
how microorganisms sense and respond to physical force stimuli remains understudied 
and incompletely understood. Recently, there has been rapidly expanding interest and 

Review Microbiology and Molecular Biology Reviews

September 2024  Volume 88  Issue 3 10.1128/mmbr.00144-23 7

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

m
br

 o
n 

16
 D

ec
em

be
r 

20
24

 b
y 

14
7.

26
.2

51
.1

47
.

https://doi.org/10.1128/mmbr.00144-23


activity in microbial mechanobiology, including the role of physical forces like fluid shear 
in regulating microbial pathogen responses, host-pathogen interactions, and infectious 
disease mechanisms.

Pertinent to this review, numerous studies have documented that microbial cells 
dynamically sense and respond to the low fluid shear culture conditions encountered 
in ground-based spaceflight analogs as well as in the true microgravity environment 
of spaceflight (3, 5, 6, 18, 65, 122). Importantly, responses exhibited by microorganisms 
cultured in these unconventional environments have unveiled novel insight into how 
microbes interact with their environment, their hosts, and each other that are not 
observed when these same organisms are grown traditionally in shake or static flasks, the 
latter of which are unable to recapitulate these physiologically relevant biomechanical 
force cues. It is pertinent to note that fluid shear conditions encountered by microbial 
cells during culture in the microgravity of spaceflight and in ground-based microgravity 
analog systems are relevant to environmental ecosystem niches naturally encountered 
by these organisms in terrestrial settings. For example, the low fluid shear stress, low 
turbulence environment of microgravity and microgravity analog culture is similar to 
conditions experienced by microorganisms in certain areas of the host. This includes 
low fluid shear environments relevant to those of microgravity, and analog culture 
systems are found between the brush border microvilli of epithelial cells and in utero 
with levels less than 1 dyne/cm2 (129–133). The former environment is relevant to that 
encountered by numerous microbial pathogens and commensals (microbiome) during 
their natural life cycles in the gastrointestinal (GI), respiratory, and urogenital tracts, as 
well as environmental niches. The parallels between fluid shear forces in microgravity, 
microgravity analogs, and certain terrestrial ecosystem niches occupied by microorgan­
isms (both in the environment and infected host) will continue to advance our mechanis­
tic understanding of how microbial responses are modulated by these environmental 
signals and provide clues into microbial mechanobiology and the nuances of microbial 
responses to physiological environmental niches in space and on Earth.

Low fluid shear forces associated with microgravity and other reduced 
gravity environments

Most biological research has been performed under the conditions of terrestrial gravity 
on Earth. The term “microgravity” has evolved to generically describe the decreased 
gravitational force experienced in LEO, where many spaceflight platforms like the ISS 
and Space Shuttle have flown and most of the spaceflight research with microorganisms 
has taken place (134). However, plans to return humans to the Moon and eventually 
to Mars highlight the importance of understanding how biological systems respond to 
partial gravity conditions, which at present has minimal data. The moon has 1/6 and 
Mars has 3/8 of the gravitational force of the Earth. The simplest relationship of microbial 
responses as a function of gravity would be a linear relationship, where alterations in 
biological responses directly correspond to the amount of gravitational force. However, if 
this relationship is similar to many terrestrial dose-responses, the relationship may more 
sigmoidal in nature, suggesting the biological response may be much larger (or smaller) 
than expected from a linear model (135). Regardless, this relationship, which will likely 
need to be determined empirically, will be important to understand as humans colonize 
the Moon and Mars.

Even with an extensive number of microbiological spaceflight experiments over the 
past 55 years, no clear evidence is currently available that microorganisms directly 
respond to decreases in gravity. Instead, microbial cells cultured in this environment 
have been proposed to respond to “indirect” effects of microgravity, such as low fluid 
shear, lack of sedimentation, mass transfer, convective forces, and hydrostatic pressure 
gradients (135, 136). As mass diffusion in liquid cultures in the absence of motile 
organisms is suspected to be limited in the spaceflight environment, one hypothesis 
to explain alterations in the responses of non-motile microbial cells is the formation of 
“depletion zones” around these cells due to limited nutrient flow (13, 137). Modeling 
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of the potential formation of depletion zones around these cell types suggests that a 
decrease in nutrient availability is possible and may be influenced by the overlapping of 
these zones when multiple non-motile microbes are close to each other (138). However, 
this hypothesis does not account for the spaceflight responses of motile microorgan­
isms (18, 139), where motility could greatly diminish the impact of potential nutrient 
depletion zones, suggesting that other factors regulate microbial responses in the 
spaceflight environment. An alternative hypothesis for observed alterations in microbial 
characteristics in the reduced gravity environment of spaceflight is based on mechano­
transductive responses (1, 2) due to the significant reduction of fluid shear forces in 
the quiescent environment of spaceflight (136, 140). Indeed, validation of this hypoth­
esis has been documented using dynamic fluid shear spaceflight analog bioreactors 
to correlate incremental changes in fluid shear levels with corresponding alterations 
in microbial responses (67, 99). However, the cellular and physical mechanism/s that 
translate this decreased fluid shear force into molecular (e.g., transcriptomic, proteomic) 
and phenotypic responses of microorganisms cultured under spaceflight conditions, as 
compared to Earth-based controls, has not been fully elucidated.

One of the earliest (if not the earliest) reports to suggest the possibility of mechano­
transductive responses to gravity-driven mechanical forces like fluid shear was proposed 
for mammalian cells in a 1997 report by an expert scientific panel led by Mina Bissell 
(141). This report entitled “Modeling Human Risk: Cell and Molecular Biology in Context” 
was commissioned by the NASA Space Biology Program and postulated that the 
reduced gravity environment of spaceflight might impact tissue structure and function. 
Specifically, the panel suggested that the three-dimensional microenvironments of both 
the inside and outside of the cell may be distorted from their normal configurations by 
microgravity (141). A report from a joint NASA and European Space Agency workshop 
followed up on this concept for mammalian cellular responses to microgravity and 
proposed that the concept of cellular tensegrity (how cells sense mechanical forces 
through the balance of compression and tension) might explain microgravity-induced 
alterations in cytoskeletal architecture and corresponding phenotypic and molecular 
changes (142). Subsequent research has since shown that like mammalian cells, bacteria 
also have the ability to actively sense and respond to physical force changes in 
their microenvironment and possess several analogous mechanosensitive structures, 
including cytoskeletal proteins (1, 87, 92).

SPACEFLIGHT AND SPACEFLIGHT ANALOG PLATFORMS USED TO STUDY 
MICROBIAL RESPONSES

Spaceflight platforms and flight-based analogs

Spaceflight research platforms like the ISS provide exceptional resources for life sciences 
studies, as these facilities offer a broad spectrum of environmental factors and associated 
complexities that can impact biological systems, including reduced gravity, increased 
radiation, increased CO2 levels, and altered circadian cycles. However, spaceflight 
microbiology experiments are still relatively infrequent when compared to the many 
thousands of terrestrial experiments that researchers perform annually worldwide. This 
lower frequency is due to factors related to opportunity, cost, and the complexities 
of conducting microbiological experiments in space (2). Accordingly, ground-based 
spaceflight analog systems which mimic key aspects of the spaceflight environment are 
valuable alternatives to validate and predict potential experimental outcomes. Research­
ers use a variety of technologies as platforms upon which to explore the effects of 
spaceflight or, in the case of spaceflight analogs, space-like stressors [e.g., radiation, 
simulated microgravity (SMG), planetary regolith], on biological systems. There are a 
number of considerations in choosing the most appropriate platform and experimen­
tal hardware for a particular investigation, including the type of scientific question, 
experiment duration, cost, technical skill, and need for specialized equipment. The 
following sections discuss both spaceflight and spaceflight analog research platforms, 
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with discussion on both the advantages and challenges associated with using these 
platforms and technologies.

Flight-based facilities available for biological research can be broadly divided into 
non-orbital (e.g., high-altitude balloons, parabolic flights), suborbital (e.g., sounding 
rockets), and orbital/deep space (e.g., orbiting vehicles, space stations, and vehicles 
traveling beyond LEO). Non-orbital and suborbital platforms are used as analogs of 
LEO and deep space missions to test hardware prototypes, perform pre-flight optimi­
zation, predict experimental outcomes, and perform post-flight validation and follow-
up studies. Depending on the type of platform selected, researchers can investigate 
microbial and/or microbial-host responses to different types, dosages, and combina­
tions of environmental stressors. Generally, experiments performed aboard high-altitude 
balloons, parabolic flights on modified aircrafts, and rocket-powered sub-orbital vehicles 
tend to be substantially cheaper and enable more rapid design and implementation 
relative to orbital payloads such as those performed aboard the ISS. These approaches 
can also provide more consistent access for experiment repetition. Challenges for these 
research payloads can include short experiment exposure times and/or a lack of the full 
spectrum of environmental conditions present during orbital and deep space missions. 
Conversely, although experiments conducted in LEO and in deep space are more 
expensive and complex to perform relative to flight analogs, organisms are exposed 
to the full range of environmental stressors encountered during human spaceflight 
missions, including a range of gravitational forces (e.g., microgravity, partial gravity, and 
hypergravity during launch/landing) and other space-associated stressors (e.g., radiation, 
regolith, extreme temperatures).

The exact boundary where “space” begins depends on the international standards 
set in accordance with the Fédération Aéronautique Internationale (143), which defines 
the edge of space at 62 miles (~100 km), at a boundary known as the Kármán line. 
Operating at closer proximity to the Earth’s surface (~6–10 km above sea level) are 
parabolic flights executed aboard specially modified aircraft that are used as an analog 
for microgravity encountered in orbital and deep space missions (144). Parabolic aircraft 
generate a series of successive upward and downward arcs during which the plane 
alternatively dives and soars, wherein organisms are exposed to controlled periods of 
weightlessness interspersed with alternating periods of increased gravitational force. At 
the injection phase, the plane climbs at a 45° angle, creating a force of about 1.8 g. 
Once the top of the trajectory is reached, thrust is reduced, and the aircraft follows a 
free-fall ballistic trajectory. The period of weightlessness lasts for ~10–20 s. This parabolic 
flight maneuver is repeated 30–40 times in an individual flight (145). Modified parabolic 
flight paths are also available to simulate lunar and Martian gravities (0.16 g and 0.38 g, 
respectively (146). High-altitude balloon flights (~28–48 km) provide another avenue 
of low-cost, near-space access for researchers. Although organisms are not exposed to 
a microgravity environment using this approach, they can be challenged with harsh, 
space-like environmental stressors such as extreme cold, low atmospheric pressure, low 
relative humidity, and increased UV and cosmic radiation (147). For scientific payloads 
aiming to evaluate responses to slightly longer periods of weightlessness than possible 
on parabolic flights, suborbital rocket-powered vehicles provide another alternative. Like 
the aforementioned aircraft, these rockets also take a parabolic trajectory, but reach 
much higher altitudes to the edge of space (~48–145 km), providing uninterrupted 
exposure times ranging from ~3 to 20 min, depending on the vehicle.

The next class of biological research platforms operate in LEO and include several 
types of orbiting vehicles and space stations. In LEO, biological organisms are exposed 
to a synergistic combination of stressors, including microgravity and increased levels of 
radiation. The vast majority of microbial experiments performed aboard LEO spaceflight 
platforms have been short-duration studies due to existing limitations in power, volume, 
hardware capabilities, and crew time. However, there is much anticipation that the 
rapid development of multiple LEO commercial platforms combined with advances 
in technology will result in urgently needed opportunities to support long-duration 
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space biosciences studies. Beyond LEO, biological systems are outside of the protective 
shield of the Earth’s magnetic field and are, thus, exposed to the full range of cosmic 
radiation (galactic and solar) in addition to microgravity (148, 149). At present, there 
are two fully operational space stations in LEO, the ISS and the Tiangong Space Station, 
which operate at ~250 miles (~400 km) above the Earth’s surface. In addition, there 
are a number of commercial and government space stations that are expected to be 
developed and operational in LEO within the next decade, including Axiom Station, 
Starlab Space Station, Orbital Reef, and the Russian Orbital Service Station, among others 
(150). These stations are being built using the lessons learned from the construction 
and operation of ISS and its predecessors, such as SkyLab, Salyut, and Mir. A diverse 
array of government and commercial vehicles have played a critical role in transporting 
microbiology experimental payloads to space. Notably, prior to its retirement the Space 
Shuttle served as a workhorse over the formative years for space life sciences and 
biomedical experiments.

Beyond LEO, the Artemis program is currently underway to return humans to the 
moon for the first time since 1972 with a focus on establishing a long-term lunar outpost. 
The first Artemis lunar missions will use the Space Launch System super heavy-lift rocket 
to launch the Orion spacecraft and their crew. A key piece of the current Artemis 
program involves the planned construction of Gateway, which will be the first space 
station in lunar orbit that will serve as an outpost to support human exploration of both 
the lunar surface and deep space missions. The Artemis program involves collaboration 
across multiple government agencies and commercial partners.

In addition to the aforementioned flight platforms, CubeSats have carried biological 
payloads in LEO and in deep space aboard Artemis I (151–156). A CubeSat is a minia­
turized satellite of standardized size (10 cm cube) that can be deployed from various 
launch vehicles as well as from space stations. The small, standardized size of CubeSats 
can be beneficial in saving costs and the incorporation of off-the shelf components. 
Additionally, they have the capability of being deployed into regions of space that 
are not yet human-occupied. Conversely, this small size can also restrict the types of 
research payloads that are compatible with this platform and can present challenges for 
the internal hardware design for environmental support and operations of biomedical 
payloads (155).

To this end, researchers face a variety of challenges that increase in difficulty 
depending on the platform selected, the experimental complexity, and the distance 
from the planet. For example, for flight analogs with short experiment exposure times 
(e.g., parabolic flight), a key consideration is the functional timescales of different 
biological processes to predict whether exposure times of the microorganism to an 
environmental stimulus will be sufficient for the phenotype of interest to manifest. For 
example, during very brief exposures (<1 min), changes in transcription and translation 
may not be easily observed due to the necessary timing for those cellular processes 
to occur. For example, it takes ~1 min to transcribe an average-sized bacterial gene 
(1 kb) in response to a stimulus (157). This is in addition to the time required for the 
cell to sense and transduce the appropriate signals. Thus, there may exist a bias in 
the reliability of measuring expression changes in shorter vs longer sequences (e.g., 
non-coding RNAs vs longer mRNAs). Similar constraints exist for other cellular character­
istics such as growth, signaling, translation, and epigenetic modifications. Conversely, 
alterations in other processes that occur more rapidly (e.g., macromolecular degradation, 
transport, conformational changes, motility over short distances) could potentially be 
measured within a shorter timescale. Along these lines, sample processing time should 
be considered if samples are to be preserved during or immediately following exposure.

As experiments transition from flight analogs into LEO and deep space missions, 
experiment difficulty increases. Even for simple microbiological payloads such as the 
growth and preservation of microbial cultures for post-flight analyses, there is extensive 
coordination required between multiple teams (e.g., science teams, hardware integra­
tors, government, and commercial partners) to ensure the experiment is safely and 
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properly executed. For this reason, pre-flight optimization of experiments in terrestrial 
laboratories using the hardware and environmental configuration which closely mirrors 
the conditions of the spaceflight mission is critical for all space life science studies. 
During this critical planning phase, investigators refine the key experimental parameters 
for the study within the context of the flight hardware, which can include cell concen­
trations, experimental treatments, incubation temperatures (before, during, and after 
the experiment), standard operating procedures for on-orbit operations by the crew, 
and fixation conditions. This phase can often take months to years, depending on the 
experiment complexity and required hardware modifications. Astronaut time and safety 
are two key considerations for any microbiology experiment. In particular, microbial 
pathogens add additional levels of complexity, requiring special procedural considera­
tions and flight hardware designs that incorporate multiple levels of containment in case 
of unanticipated leaks. The crew also receive specialized training for these situations 
which are planned and practiced months on the ground before the flight experiment. 
Operations using biosafety level 2 (BSL2) pathogens often require the use of facilities 
such as in-flight safety cabinets (e.g., glove box or glove bag) and/or hardware with 
multiple levels of containment to prevent leaks into the vehicle or station environment 
which would pose safety risks to the crew. BSL3 pathogens (e.g., SARS-CoV-2, Mycobacte­
rium tuberculosis, Yersinia pestis) are not allowed aboard any NASA spacecraft.

Another challenge is the need for more predictive modeling approaches, including 
those associated with artificial intelligence (AI) and machine learning that incorporate 
data from system-level omics sequencing with functional phenotypic profiling. To 
facilitate this effort for spaceflight and spaceflight analog biological studies, NASA 
has established several open database repositories and archives that are searchable, 
including GeneLab, the Ames Life Sciences Data Archive (ALSDA), and others, several of 
which have been integrated into a single portal known as the NASA Open Science Data 
Repository [OSDR; osdr.nasa.gov/bio (158)]. GeneLab and ALSDA have created analysis 
working groups comprised of scientists in the community to maximize the utility of this 
repository and facilitate higher-level integrated analyses of the omics and phenotypic 
data deposited into OSDR (159, 160). These resources were developed with the intention 
to better understand biological responses to both short- and long-duration space and 
spaceflight analog studies in the context of their biological, chemical, and physical force 
microenvironments. Such tools would ideally be useful in developing more predictive 
models to effectively delineate between primary and secondary microgravity effects 
on microbial systems, as well as artifacts that may have occurred due to experimental 
design and spaceflight hardware. This becomes even more important given the relatively 
rare opportunity for experimental replication of spaceflight biological results.

As experimental complexity begins to approach that of most terrestrial laboratories, 
researchers may encounter limits as to the amount and type of science that can be 
successfully completed due to factors such as limitations in hardware capabilities, 
crew time, safety, and cold stowage availability (among others). Factors that increase 
experimental complexity widely vary but can include co-culture of different cell types 
(e.g., polymicrobial or host-microbe), infection of a multicellular host organism (see 
below), use of different media types, specific atmospheric conditions (i.e., temperature, 
gases), serial passaging between cultures (e.g., during multigenerational experiments), 
countermeasure screening (e.g., antibiotics or disinfectants at different concentrations), 
monitoring of biofilm growth and analysis, and the inclusion of multiple sampling 
time points and/or fixation conditions to accommodate different post-flight analyses. 
Microbiologists new to the field may also be surprised that even routine procedures such 
as serial dilutions and plating for viable cell counts are not easily performed on orbit 
(outside of environmental monitoring operations). Handling and transferring liquids in 
microgravity can present logistical and/or safety challenges, the latter due to a lack of 
settling of pathogen-containing droplets that can be released during basic operations. 
For the former, bubbles and lack of mixing in primary culture chambers as well as in 
tubing lines connecting to secondary chambers have presented major challenges when 
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trying to transfer homogeneous solutions. These considerations become more impactful 
as volume sizes decrease (e.g., when using microfluidic devices such as lab-on-a-chip or 
organ-on-a-chip). To circumvent some of these or other challenges, some researchers 
have used solid or semi-solid media (16, 53, 104, 161).

Another important spaceflight limitation involves virulence profiling of host-patho­
gen interactions. During a virulence study, the survival of an infected host organism is 
monitored from start to finish to acquire a median lethal dose (LD50) or median time-
to-death (TD50), depending on the model host organism used. At present, vertebrate 
models (e.g., rodents) cannot be infected on orbit due to restrictions associated with 
safety and animal capacity—the latter due to the wide range of pathogen doses required 
to calculate an LD50 using the Reed and Muench method (162). As an alternative 
approach, in-flight growth of microbial cultures followed by post-flight recovery of these 
cultures for virulence profiling in rodents or invertebrates has been used successfully 
(5–7). Additionally, in-flight, real-time monitoring of virulence has also been performed 
using the invertebrate model organism C. elegans (163).

As biological questions continue to grow in complexity, there is a pressing need 
for the scientific and engineering communities to work together to design a series of 
modular spaceflight hardware systems that take these requirements into account. The 
hardware, designed to be automated, manual, or a hybrid of the two (allowing for crew 
interactions as needed), should be able to interface with other facility instruments used 
for downstream processing and analysis, such as centrifuges, microscopes, sequencers, 
and flow cytometers. This will become an especially important consideration in the 
establishment of life sciences facilities on the lunar or Martian surfaces. To this end, 
there is no automated or semi-automated hardware available that can conduct complex 
microbiological experiments with the broad range of capabilities, precision, and accuracy 
comparable to what is achievable in most terrestrial laboratories (2). This becomes an 
even more critical consideration as science missions extend beyond LEO into deep space 
and will, thus, rely more heavily on automation and in situ analysis. In particular, assays 
that require extensive procedural steps still present a challenge for full automation with 
minimal-to-no crew intervention. For example, in most studies, researchers require the 
ability to reproducibly transfer small (microliter), well-mixed solutions between different 
containers. In addition, many experiments require multiple treatment types at several 
kinetic time points, such as washing, drug treatments, lysis steps, and preservation 
in different types of fixatives. Likewise, biological samples tend to require a range of 
different storage temperatures throughout a mission, often ranging from a deep freeze 
(−80°C) up to body temperature (37°C) or even higher. To our knowledge, outside of 
basic incubators, there is no automated hardware available capable of handling the 
temperature extremes needed for this temperature range.

It has also been suggested that, in addition to terrestrial ground control cultures, 
some studies conducted in the space environment may also benefit from the inclusion 
of an on-board centrifuge control to run in parallel with flight samples to artificially 
re-introduce gravity (145, 164). This study design aims to delineate the biological and 
physical changes occurring due to microgravity (directly or indirectly) vs other factors 
associated with spaceflight, such as radiation or launch vibrations. This approach also 
allows investigators to conduct their experimental and control samples under even 
more tightly regulated environmental conditions (within different chambers of the same 
hardware) and timing (i.e., no lag time, as is the case for terrestrial controls) (165). 
However, this approach is not without potential pitfalls. Depending on the size and 
power requirements of the instrument, it may not be feasible to install and/or operate 
a centrifuge on smaller vehicles due to space and weight restrictions. Furthermore, 
depending on the centrifuge design and the type of biological sample being tested, 
the application of a centrifugal force might introduce artifacts to the flight 1 × g 
control samples as a result of unintended gravity gradients and inertial shear forces that 
could ultimately alter experimental outcome and interpretation (165, 166). In particu­
lar, adherent vs non-adherent cells can be differentially affected. Adherent cells will 
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experience shape deformation in a radius-dependent manner, while non-adherent cells 
will accumulate at the point of highest acceleration (166). Depending on the centrifuge 
configuration (i.e., centrifuge diameter and distance), it is estimated that inertial forces 
may account for up to 99% of the total force applied to the cells (165). While centrifuges 
have not yet been widely adopted in many spaceflight studies, the introduction of 
artificial gravity using a centrifuge has shown promising results in partially or fully 
reversing negative spaceflight-associated physiological phenotypes in mice (167–169) 
and fruit flies (170). Centrifuges have also been used to study the effect of artificially 
induced Mars gravity on the final cell densities of Sphingomonas, Bacillus, and Cupriavi­
dus bacterial species (171). No differences were observed in the final cell counts between 
microgravity cultured samples compared to those grown under true Earth gravity or in 
simulated Mars gravity conditions.

These types of artifacts are not limited to the use of centrifuges. As more space life 
science investigations report findings using biological organisms cultured in different 
types of hardware, large-scale data analysis will help identify experimental results 
that are hardware-driven from those due to spaceflight-specific factors. This approach 
was recently applied in plants, wherein meta-analysis of 15 transcriptomic data sets 
of space-flown Arabidopsis thaliana separated out the confounding, hardware-related 
effects in the data from differences specifically due to the microgravity environment 
(172). The meta-data-based analyses grouped experiments of similar experimental 
design, including environmental conditions, and hardware systems, which allowed this 
novel study to address this issue in such a unique way. As these types of trends continue 
to emerge, it will be critical for scientists and engineers to collaborate from the onset in 
the design (or re-design) of next-generation hardware systems that are better adapted 
to function in the microgravity environment while providing optimal support for each 
biological organism under study.

Ground-based spaceflight analog platforms

Due to the inherent challenges associated with performing research in space, researchers 
often use spaceflight analog systems designed to recapitulate specific aspects of the 
spaceflight environment. These approaches, which replicate one or more aspects of 
orbital spaceflight, tend to be less expensive than conducting spaceflight experiments 
and also enable more routine access for iterative testing. Spaceflight analogs are used 
both for predicting in-flight responses and for post-flight validation of results. There are 
different types of analogs that can be used to model different types of environmental 
factors encountered during space travel (e.g., alterations in gravitational forces, radiation, 
regolith, atmospheric conditions). To predict cellular responses to microgravity using 
ground-based platforms, investigators routinely use experimental approaches such as 
clinorotation, diamagnetic levitation, and drop towers. Radiation facilities, such as the 
NASA Space Radiation Laboratory and an international STARLIFE consortium involving 
investigators from the German Aerospace Consortium (DLR) and JAXA (173), are used 
to simulate aspects of the complex radiation environment encountered during space 
travel. Simulants approximating the size and chemical compositions of regolith present 
in different regions of the moon and Mars are being studied to better understand 
their impact on biological systems and study their potential use for in situ resource 
utilization. Other aspects of the space environment can also be approximated in 
specialized chambers (e.g., vacuum chambers) to simulate atmospheric conditions. In 
this section, we focus on select ground-based spaceflight analogs that are routinely used 
for simulating reduced gravity environments.

There are several popular approaches that have been used for decades by researchers 
to simulate reduced gravity environments, including simple 2-D clinostats, the rotating 
wall vessel (RWV bioreactor, and the 3-D clinostat/random positioning machine (RPM) 
(Fig. 2). Depending on the technique used, bacterial cultures are rotated about either 
one axis (simple 2-D clinostat and the RWV bioreactor) or two independent axes (3-D 
clinostat/RPM) to maintain cells in suspension. These techniques use rotation to decrease 
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fluid shear forces over the surface of the cells and prevent sedimentation (1, 174). 
As there are many excellent reviews that provide excellent detail on the operational 
principles of each of these systems (1, 140, 174–179), we provide a brief summary of each 
approach below.

FIG 2 Spaceflight platforms, flight-based analogs, and ground-based spaceflight analogs. Researchers use several types 

of spaceflight and spaceflight analog platforms to study the impact these environments on microbial physiology, gene 

expression, and host-pathogen interactions. Spaceflight platforms and flight-based analogs are shown in order of increasing 

distance from Earth. Ground-based spaceflight analogs including the RWV bioreactor, an example of a 2-D clinostat. The RWV 

bioreactor has also been referred to as a high aspect ratio vessel/high aspect rotating vessel (HARV) and rotary cell culture 

system (RCCS). The environmental conditions provided by these analogs have been described by a variety of terms including 

low shear modeled microgravity (LSMMG/primarily used to describe the RWV environment), SMG, and modeled microgravity 

(MMG). The RPM is an example of a 3-D clinostat. In diamagnetic levitation, cells are repelled away from the strongest regions 

of the magnet (red color) toward a region where the gradient approaches zero (blue color), resulting in stable levitation. Drop 

towers can provide between 2 and 10 s of freefall, depending on the tower. Created in part with BioRender.com.
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The simplest 2-D clinostat design consists of small tubes, cuvettes, or chambers 
that are completely filled with the culture medium and rotated about a horizontal 
axis (perpendicular to the force of gravity). These devices are rotated at rates that 
depend on the size of the biological organism under study. Sometimes referred to as 
fast-rotating clinostats (174), it is common to rotate these culture systems at a high speed 
(~60 rpm) to prevent sedimentation. For temperature control, clinostats are maintained 
in a temperature-controlled incubator. Although liquid cultures are the most common 
type of samples used with clinostat rotation, some researchers have used a similar 
approach to rotate microorganisms grown on solid media (180).

The RCCS is another type of 2-D clinostat, with a slightly more complex design (Fig. 
2). Culture vessels called RWV bioreactors attach to the RCCS and are rotated about 
a horizontal [for modeled microgravity (MMG) cultures] or vertical axis (for control 
cultures). There are different RWV bioreactor designs, including the high aspect ratio 
vessel/high aspect rotating vessel (HARV) and the slow turning lateral vessel (STLV). 
HARVs are pancake-shaped and have a silicone rubber membrane for oxygenation 
spanning the entire back of the vessel. These vessels are commonly used for both 
microbial and mammalian cell culture. The shape of STLVs resembles that of a soup can, 
with the silicone oxygenation membrane running down the center core of the vessel. 
STLVs are more commonly used for 3-D tissue culture applications, though can also be 
used for microbial culture if desired.

The RCCS/RWV culture system was designed by the NASA Biotechnology group at 
the NASA Johnson Space Center in an effort to model the low fluid shear, low-turbu­
lence environment that cells experience in true microgravity (1, 95, 181). To generate 
an optimized form of suspension culture, the bioreactor is filled completely with the 
culture medium such that there are no bubbles (i.e., zero headspace) and rotated about 
a horizontal axis. These features are critical to establishing solid-body rotation of the 
medium in the RWV that generates a low fluid shear environment for cell growth, 
which was previously designated as LSMMG (1). For control cultures, bioreactors can be 
reoriented by 90° to rotate about their vertical axis (Fig. 2), which allows cells to sediment 
toward the bottom of the vessel. Unlike simpler 2-D clinostats, the RCCS actively provides 
oxygen to the culture across a gas-permeable membrane on the back of the HARV (or 
through the central core of the vessel for STLV) bioreactors and is typically operated 
using a much slower rotation speed (~20–25 rpm for most cultures). These culture 
systems are small enough to be housed in standard incubators for temperature control 
and have been used to successfully grow and evaluate the responses of a wide range 
of microbes and have also been used for the development and testing of advanced 3-D 
models of human tissue (81, 182). It is also important to note that the low fluid shear 
conditions during LSMMG culture have been mathematically modeled and found to be 
physiologically relevant to certain low fluid shear niches encountered in the human body 
(e.g., in utero, between epithelial brush border microvilli) (67, 129–133).

Another approach to simulating microgravity involves the use of 3-D clinostats or 
the RPM (Fig. 2), which simulates microgravity by rotating cultures about two orthogo­
nal axes. Different types of culture vessels can be attached to these instruments (e.g., 
flasks, plates, tubes, RWV bioreactors). The earliest versions of these technologies were 
developed by researchers studying the effects of MMG on plants (183–185). These 
systems are designed such that an interior rotating frame containing the attached 
sample is linked to an independently rotating outer frame (100). Experiments can be 
performed using different modes of operation, including a classic 2-D clinostat mode 
(i.e., rotating around one axis), 3-D clinostat mode (rotates about two axes, using 
constant speeds and directions), and 3-D random positioning mode (rotates about two 
axes, using random speeds and directions) (174, 175). When operating in 3-D clinostat 
mode, it has been demonstrated that the inner and outer frames should be rotated at 
different constant speeds since equal rotation speed was found to be inadequate in 
simulating the microgravity environment (175, 186). This was confirmed in a microbio­
logical study assessing alterations in biofilm formation, transcriptional profiles, and 
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antibiotic resistance of Mycobacterium marinum using both a commercially available RPM 
(RPM 2.0) and a recently developed more cost-effective 3-D printed 3-D clinostat (186). 
While some researchers use the term “3-D clinostat” and “RPM” interchangeably, not all 
3-D clinostats are operated in a random mode with respect to speed and direction, and 
thus, it may be more accurate to specifically refer to the operational mode(s) used during 
experimentation (174).

To minimize the possibility of centripetal acceleration on cultures within the RPM, 
samples are placed as close to the center of rotation as possible although this becomes 
more challenging as larger sample volumes or more replicates are tested simultaneously 
(175). Like 2-D clinostats, culture chambers must be completely filled with the culture 
medium (no bubbles) during operation to minimize turbulence. Temperature control 
can also be achieved by maintaining the instrument in incubators. The RPM has been 
routinely used for assessing responses of plants and mammalian cultures to MMG and, 
to a lesser extent, to evaluate microbial responses (relative to the RCCS) (187). In a 
comparative study using HARV bioreactors attached to either the RCCS or the RPM bases, 
divergent molecular responses were observed for Pseudomonas aeruginosa between 
SMG conditions using these two different technologies (100). Injection of a small droplet 
of crystal violet into HARV cultures revealed rapid levels of fluid mixing in the cultures 
attached to the RPM relative to those attached to the RCCS, with LSMMG culture on the 
RCCS displaying the lowest levels of mixing relative to the RPM cultures and the RCCS 
reoriented control cultures, which may explain the observed molecular differences (100). 
This is an important consideration since mixing is anticipated to be low in the quiescent 
environment of spaceflight. Additional publications also reinforce the concept that fluid 
shear levels in RCCS cultures are lower than those grown on the RPM (18, 67).

Diamagnetic levitation has also been used to expose microorganisms to a SMG 
environment. Biological organisms possess diamagnetic properties (largely due to their 
high water content) that enable their levitation when placed into a strong magnetic field, 
like those produced by superconducting magnets (188, 189). Within the vertical gradient 
produced by the external magnetic field, biological systems are repelled away from the 
strongest regions of the magnet toward a region where the gradient approaches zero, 
resulting in stable levitation of the organism (190). In a notable early demonstration 
of this approach, Geim and colleagues successfully levitated a living frog (191). While 
a wide range of organisms have been successfully exposed to diamagnetic levitation 
without negatively impacting their viability, an important consideration in this approach 
is to ascertain whether the strength of the magnetic field can exert negative effects 
on the organism of interest. Should this be the case, the magnitude of the magnetic 
field can be reduced by using paramagnetic solutions or ferrofluids to increase the 
magnetic susceptibility of the medium (190). It is also important to consider whether the 
biological effects observed are due to weightlessness vs the high magnetic field itself, 
especially considering the differing magnetic susceptibilities of cellular constituents (192, 
193) as well as indirect effects of the magnetic field, such as differences in mixing. For 
example, Dijkstra et al. found that the application of a magnetic field led to increased 
growth rates of Escherichia coli and Staphylococcus epidermidis (188). Upon additional 
experimentation, the authors discovered magnetically induced convection occurred in 
the SMG samples, thereby increasing oxygen availability to the bacteria within those 
cultures (188).

Drop towers are another type of ground-based platform that can be used to study 
the effects of near weightlessness on biological systems. Drop towers are shafts typically 
built in excess of 100 m in height where the air can be evacuated from the chamber to 
reduce aerodynamic drag. There are several drop towers worldwide, including the Zero 
Gravity Research Facility at the NASA Glenn Research Center, the Dryden Drop tower at 
Portland State University, the Bremen Drop Tower, the Microgravity Laboratory of Japan 
(MGLAB), Queensland University of Technology Drop Tower facility, and the Beijing Drop 
Tower. Most of these drop towers provide between ~2–5 s of free fall for experimental 
payloads. The Breman Drop Tower in Germany extends this time by catapulting payloads 
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from its base to the top of the chamber and back down for ~10 s of freefall. In this design, 
during the acceleration and deceleration phases of the experiment, payloads are briefly 
exposed (~200 ms) to high g-forces (~25–50 × g).

As with flight-based platforms, there are a variety of challenges that researchers face 
depending on the analog platform selected and the complexity of the experimental 
question. With ground-based technologies, the goal is usually either to predict responses 
that could occur in the true microgravity environment or to validate spaceflight data. 
As it is difficult to recreate the complex combination of environmental stimuli in space 
using a single technology, there is no “one-size-fits-all” approach. Depending on the 
organism and the phenotype of interest, researchers may find some techniques to 
be more predictive than others. The combining of different technologies or experimen­
tal approaches may help facilitate the dissection of different factors (e.g., fluid shear, 
oxygen, nutrient distribution, sedimentation, radiation) responsible for spaceflight-asso-
ciated phenotypes. One challenge facing researchers is the development of novel 
technologies to accurately model the continuum of gravity levels present in space, 
such as those present on the moon or Mars. To begin to address this challenge, new 
software algorithms have been developed for the RPM in an effort to simulate a range 
of partial gravity environments (194). While this approach has been used to model 
osteoblast behavior under different simulated partial gravities, it will be interesting to 
assess the fidelity of this approach in predicting microbial behavior in true partial gravity 
environments.

SPACEFLIGHT AND SPACEFLIGHT ANALOG ENVIRONMENTS ALTER MICRO­
BIAL RESPONSES IN UNEXPECTED WAYS

Throughout the history of spaceflight microbiology research, compelling evidence 
has repeatedly demonstrated that spaceflight alters a variety of microbial character­
istics. While different microorganisms respond differently to the spaceflight environ­
ment, multiple reports have also documented the use of common mechanisms as 
shared microbial response strategies to both spaceflight and spaceflight analog culture, 
including both Gram-negative and Gram-positive bacteria (3, 5, 6, 8, 65, 69, 100, 
122, 195). As the number of important spaceflight and spaceflight analog studies has 
increased dramatically over the past 20 years, this review will focus on key microbial 
studies that have direct implications for human health and habitat sustainability.

Predictably, there has been an increased use of -omics technology (genomics, 
transcriptomics, proteomics) to study microbial responses to spaceflight and spaceflight 
analog conditions, which have significantly advanced insight into molecular mechanisms 
that might be underlying these responses. These approaches have provided a wealth 
of valuable information that can be openly searched in public databases [like NASA’s 
GeneLab (196)]. However, focusing solely on -omics as predictive of cellular function 
is inadequate, as the presence of a gene does not guarantee its expression and the 
expression of a gene does not guarantee its function. Rather, these processes are 
context-specific and driven by the dynamics of the cellular microenvironment that 
collectively governs cell behavior and function, often in non-intuitive ways, which is 
commonly observed when microbial cells are studied in the context of their natural fluid 
shear force environments (1, 5, 64, 65, 67, 68, 72, 74, 88, 99, 107, 108, 119, 120, 127, 197, 
198).

This fundamental concept reinforces the importance of combining functional 
phenotypic studies with multi-omics approaches to accurately predict how different 
environments, including spaceflight and spaceflight analog conditions, alter microbial 
physiology in unexpected ways (1–3, 5, 6, 18, 64, 65, 67, 68, 74, 94, 96, 99, 122). This is 
a critical consideration, as the physical basis of microbial behavior is rarely considered 
when predicting responses to their complex and dynamic microenvironmental niches, 
especially in the context of biologically realistic mechanical forces, like fluid shear. 
Pertinent to this review, it is known that fluid shear forces associated with spaceflight 
and spaceflight analog conditions can drive emergent microbial phenotypes in ways 
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that are not intuitive and, thus, cannot be accurately predicted by sequencing alone. 
Accordingly, the integration of sequencing and functional phenotypic profiling studies is 
essential for the development of more predictive modeling approaches to generate and 
test hypotheses to advance basic science and translational applications.

Given the dynamic plasticity of microbial cellular responses to their environment, it 
should not be surprising that findings from microbiology spaceflight and spaceflight 
analog studies are both context-specific and organism-specific, and not universally 
true for all microorganisms, including between closely related pathovars (72, 98). For 
example, while some microorganisms have demonstrated changes in final cell popula­
tion densities, antibiotic resistance, morphology, biofilm formation, and virulence in 
response to spaceflight and spaceflight analog culture, other species have not shown 
these same phenotypes (1, 5, 6, 8, 12, 14, 15, 64, 69, 199–202). In addition, the lack 
of proper controls to draw conclusions for some spaceflight and spaceflight analog 
experiments, along with the use of different flight hardware technologies and different 
culture conditions, has complicated interpretations and, thus, is not included in this 
review.

Salmonella pathovars

The model Gram-negative foodborne pathogen, Salmonella enterica serovar Typhimu­
rium (S. Typhimurium), is the best-characterized microbial pathogen in response to both 
spaceflight and spaceflight analog culture conditions (4–6, 44, 64, 65, 67, 72, 74, 94, 
96, 98, 203–206). Due to its route of access through spaceflight food, Salmonella has 
clear implications for astronaut health. Accordingly, NASA specifically tests for Salmonella 
prior to flight and has disqualified food destined for the ISS based on its isolation (2). 
Moreover, despite pre-flight screening and quarantine procedures, Salmonella spp. have 
been recovered from crew refuse (207) and ISS surfaces (208). The earliest documented 
spaceflight study using Salmonella was a 1968 report of S. Typhimurium cultures grown 
on the NASA satellite mission, Biosatellite II, which found that cultures grown in space 
had greater population densities as compared to Earth-grown controls of the same 
organism (44, 203).

In addition to operational concerns for spaceflight missions, the interest in S. 
Typhimurium as a model organism to mechanistically understand how the micrograv­
ity environment impacts microbial behavior began with early seminal studies over 
two decades ago. In these studies, S. Typhimurium cultured to log phase in LSMMG 
conditions in the RWV bioreactor exhibited a significant increase in virulence (decreased 
time-to-death, decreased LD50) and increased ability to colonize the deep tissues of 
liver and spleen in mice following oral infection, as compared to the reoriented control 
(64). Consistent with the enhanced virulence phenotype observed in animals, LSMMG 
culture also increased the ability of log phase S. Typhimurium to survive challenge with 
pathogenesis-related stressors, including acid, osmotic and thermal stress, and increased 
intracellular survival in cultured macrophages as compared to control conditions (64). 
Furthermore, the LSMMG and reoriented control cultures exhibited the same log phase 
growth profiles and final cell densities. Transcriptomic profiling showed that LSMMG 
culture directed global reprogramming of gene expression throughout the S. Typhimu­
rium chromosome as compared to control conditions, including changes in a broad 
range of functionally diverse groups, e.g., transcriptional regulators, virulence factors, 
lipopolysaccharide (LPS), biosynthetic enzymes, iron-utilization enzymes, metabolism, 
and proteins of unknown function (65). In agreement with transcriptomic results, 
functional phenotypic profiling demonstrated (i) significantly less LPS production in 
LSMMG cultures and (ii) a functional role for ferric uptake regulator in regulating the 
LSMMG acid stress response (65). Unexpectedly, there was no upregulation of known 
virulence genes that could explain the increased virulence of Salmonella observed 
in response to LSMMG. Specifically, known virulence genes were either downregula­
ted or showed no differential expression between LSMMG and the reoriented con­
trol. This included the hfq gene, which encodes the evolutionarily conserved RNA 
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binding chaperone protein, Hfq, that is now known to regulate the post-transcriptional 
expression of a large number of genes in Salmonella (209), although at the time of the 
Wilson et al. 2002 publication (65), the role of Hfq as a global regulator of Salmonella 
gene expression and phenotypic properties (including virulence) had not yet been 
identified.

These early studies using S. Typhimurium cultured in the low fluid shear forces of 
the RWV spaceflight analog bioreactor not only provided important information for 
astronaut health risk assessments but were also the first reports that a mechanical 
force could regulate microbial virulence and global gene expression (transcriptomic and 
proteomic) (64, 65). These studies also demonstrated that fluid shear levels relevant to 
those encountered by Salmonella in the microgravity environment of spaceflight as well 
as in the intestinal tract of the infected host, acted as a novel environmental signal that 
regulated virulence, stress resistance, and gene expression in a microbial pathogen (1, 
3, 64, 65, 67). In addition, mathematical modeling and computational studies demon­
strated a progressive relationship between incrementally increasing, quantified levels 
of physiological fluid shear in the RWV and gene expression and pathogenesis-related 
stress responses in a classic GI disease-causing strain of S. Typhimurium (67). Collectively, 
these findings showed that this specific strain of classic GI S. Typhimurium (the same 
strain used in the previous RWV studies) was able to sense and respond to different levels 
of fluid shear relevant to those encountered during the natural course of infection.

The LSMMG-induced regulation of S. Typhimurium virulence, stress response, and 
gene expression observed in log phase cultures was reminiscent of regulation by the 
master stress response regulator, RpoS, which regulates these same responses when this 
pathogen is grown in conventional shake or static flask conditions (210–213). Given that 
RpoS is operative in both the log and stationary phases and is also regulated by Hfq, it 
was hypothesized that RpoS was a likely candidate in LSMMG signal transmission in S. 
Typhimurium. However, the LSMMG log phase stress response (acid, osmotic, thermal, 
oxidative stress, and macrophage survival) and transcriptional response were shown to 
be independent of RpoS (94). Unexpectedly, stationary phase resistance to acid and bile 
salts stressors, as well as adherence to and survival within intestinal epithelial cells, did 
not require RpoS when S. Typhimurium was cultured under LSMMG (96). The finding that 
a functional rpoS allele was dispensable for phenotypic responses of stationary phase 
LSMMG cultures of S. Typhimurium was further unexpected considering that LSMMG was 
shown to differentially regulate multiple genes in the RpoS regulon in stationary phase 
cultures of this same strain (74).

Consistent with LSMMG cultured classic GI S. Typhimurium being more virulent in 
mice (64), a recent study showed that LSMMG stationary phase cultures of this same 
strain exhibited enhanced ability to adhere, invade, and survive in 3-D biomimetic 
human intestinal tissue co-culture models containing immune cells and induced the 
expression of bacterial genes involved in pathogenesis (e.g., invasion, motility, and 
chemotaxis) (74). In addition, infection of 3-D intestinal co-culture models with LSMMG 
cultured S. Typhimurium enhanced host cell gene expression profiles reflective of 
heightened responses to infection (e.g., inflammation, tissue remodeling, and wound 
healing) relative to control-infected cultures (74). Surprisingly, these LSMMG phenotypic 
and molecular trends were further upregulated in an hfq mutant as compared to 
wild-type S. Typhimurium. The finding that LSMMG culture enhanced the host-patho­
gen interaction during the earliest stages of infection in an Hfq-independent manner 
was unexpected given that these pathogenesis-related phenotypes and host respon­
ses to infection are profoundly impacted when the hfq mutant is grown under tradi­
tional culture conditions (209). Collectively, these findings add to the growing body of 
literature demonstrating the importance of incorporating physical force considerations 
and advanced biomimetic 3-D tissue culture models into in vitro infectious disease 
studies. These findings further reinforce the critical role of mechanotransductive forces as 
microenvironmental signals in reprogramming S. Typhimurium.
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Subsequent studies have since confirmed that when grown in spaceflight analog 
conditions (RWV), Salmonella pathovars that cause different disease pathologies with 
diverse host tropisms responded differently to alterations in fluid shear (72, 98). A 
notable example is the LSMMG response of the S. Typhimurium pathovar, multidrug-
resistant ST313 strain D23580, which causes life-threatening systemic bloodstream 
infections in humans but does not often cause GI symptoms (214). Unlike classic GI 
S. Typhimurium, a culture of D23580 in higher fluid shear levels increased the virulence 
and pathogenesis-related stress responses of this pathovar, as compared to LSMMG 
conditions (72). These findings align with the different fluid shear infection niches 
exploited by these two closely related pathovars during the infection process, which 
suggests that D23580 may have adapted to high fluid shear niches in the bloodstream, 
while classic GI S. Typhimurium acclimated to low fluid shear conditions found between/
near brush border microvilli in the intestine (67). This possibility is not unprecedented, 
as interactions between microorganisms and their microenvironmental niches have been 
postulated to be important for species diversity, selection, and evolution (128). Recently, 
extensive transcriptomic and functional phenotypic profiling of mechanotransductive 
pathogenic phenotypes and associated molecular regulatory mechanisms in D23580 
expanded the characterization of this pathogen when grown in a broader range of 
quantitated physiological fluid shear levels in the RWV than previously tested (99). The 
results of this study confirmed that a progressive series of quantified fluid shear levels 
altered pathogenesis-related stress resistance (e.g., acid stress, macrophage survival), 
colonization of 3-D human intestinal tissue models (adherence, invasion, intracellular 
survival), and transcriptomic responses of this pathogen in a progressive fashion (99).

The increased virulence phenotype and identification of Hfq as a key regulator of 
the LSMMG response in S. Typhimurium were subsequently validated in two independ­
ent spaceflight experiments flown aboard NASA Space Shuttle missions, STS-115 and 
STS-123 (5, 6). These spaceflight experiments cultured S. Typhimurium in the quiescent 
low fluid shear conditions of true microgravity using the same GI strain previously used 
in the RWV (5, 6) and were the first demonstrations that spaceflight culture increased 
the virulence of a microorganism. As observed in LSMMG cultures, spaceflight culture 
conditions in both studies significantly increased the virulence of S. Typhimurium in an 
orally infected mouse model (5, 6) as compared to synchronous ground control cultures. 
Since NASA does not allow in-flight infection of vertebrate animals, the mice were 
infected with the spaceflight-grown Salmonella immediately after the Space Shuttles 
landed at the Kennedy Space Center and compared to identical ground controls that 
were maintained under the same conditions as the flight samples, except they did 
not fly in the microgravity environment. Global transcriptomic and proteomic profil-
ing of the samples identified the S. Typhimurium “spaceflight stimulon” and showed 
regulation of diverse genes (the majority of which were downregulated as compared 
to ground-based controls), including those regulating host-pathogen interactions, 
virulence, stress responses, biofilm formation, flagellar-based motility and chemotaxis, 
iron utilization/storage, metabolism, horizontal gene transfer, outer membrane proteins 
associated with the periplasmic stress response, regulatory proteins, ribosome structure, 
and small non-coding RNAs. Importantly, many of these genes (including small non-
coding RNAs) were either members of the Hfq regulon or genes involved in interacting 
with and/or regulating Hfq (5), which was previously identified as differentially regu­
lated during LSMMG culture in this same organism (64). Hfq binds to small ncRNAs 
thereby facilitating their association with mRNAs; the outcome of which plays a diverse 
role in regulating gene expression, virulence, stress responses, antibiotic resistance, 
DNA methylation, and genome stability in this bacterium (209, 215–225). Interestingly, 
hfq expression was downregulated in response to spaceflight culture (5), which was 
consistent with its expression during LSMMG culture in the RWV (64). Validation of the 
role for Hfq as a likely global regulator of the S. Typhimurium response to the spaceflight 
environment was investigated using the RWV bioreactor, which demonstrated a role for 
hfq in regulating the LSMMG acid stress response and macrophage survival (5).
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Subsequent to the Salmonella spaceflight and spaceflight analog studies, other 
microbial pathogens and commensals have since been reported to use Hfq as a response 
regulator to low fluid shear forces experienced by microorganisms in both the micrograv­
ity environment of spaceflight and on Earth during their natural life cycles, including 
in the infected host (8, 69, 100, 195). This shared regulation of Hfq by diverse Gram-
negative and Gram-positive bacteria (pathogens and commensals) in response to low 
fluid shear niches encountered in their natural terrestrial environments may serve to 
pre-adapt some bacteria to be “hardwired” to respond to the microgravity environment 
of spaceflight. These fluid forces are relevant to those encountered during the normal 
lifecycles of microbial cells, but they have been widely overlooked as environmental 
stressors with the potential to dictate the outcome of infection.

To better understand the connection between media nutrient content and the altered 
Salmonella virulence observed during spaceflight culture, the impact of media ion 
composition on spaceflight-associated changes in both virulence and gene expression 
was investigated. The premise for this spaceflight experiment was based on previous 
transcriptomic data showing that S. Typhimurium cultured under LSMMG and space­
flight conditions in Lennox broth (LB) differentially regulated a large number of genes 
encoding ion response pathways (5, 65), as well as phenotypic differences in lag phase 
and generation times observed during LSMMG culture as compared to control condi­
tions (94). In addition, RWV studies using the closely related enteric bacterium, E. coli, 
showed differences in gene expression profiles during RWV culture in Luria broth vs 
MOPS minimal media (226). Based on this information, three different media were used 
in a separate S. Typhimurium spaceflight study to investigate the impact of media ion 
composition on virulence (6). These media were LB (used in both the original space­
flight and spaceflight analog Salmonella virulence studies) (5, 64), M9 minimal media 
(containing high levels of inorganic ions), and a hybrid LB-M9 media supplemented to 
contain the same concentrations of five inorganic salts/ions found in the M9 medium 
(phosphate, potassium, magnesium, sulfate, and chloride). In agreement with the first 
Salmonella virulence spaceflight study, S. Typhimurium cultures grown in the LB medium 
again displayed increased virulence in mice as compared to ground controls, which 
gave the rare opportunity to independently validate spaceflight results. Importantly, 
spaceflight cultures grown in the M9 medium did not display increased virulence as 
compared to ground controls, and the addition of the five inorganic salts found in M9 to 
the LB medium (hybrid LB-M9) reversed the increase in virulence of spaceflight cultures 
grown in the LB medium alone (6). Intriguingly, while different virulence responses 
were observed in Salmonella spaceflight cultures grown in LB and M9 media, significant 
similarities in transcriptomic and proteomic profiles indicated the involvement of the 
Hfq regulon in both media types (6). These genes included those involved in flagellar 
motility, Suf transporter formation and other ABC transporters, ribosomal structure, 
iron utilization, hydrogenase formation, and small non-coding regulatory RNA expres­
sion/function. Findings from this spaceflight experiment led to follow-up spaceflight 
analog studies in the RWV which showed that phosphate and magnesium ions were 
sufficient to alter the acid stress responses when Salmonella was cultured in a spaceflight 
analog model (6).

The increased ability of ground-based spaceflight analog (RWV) cultured S. Typhimu­
rium to colonize 3-D human intestinal tissue models (74) suggested the possibility of 
a heightened infection of human cells in true spaceflight. To test this hypothesis, 3-D 
human intestinal cell culture models were infected with S. Typhimurium when both the 
host and pathogen were simultaneously exposed to the spaceflight environment on 
the ISS. This was the first study to evaluate the response of human cells to infection 
during spaceflight (4). Transcriptomic and proteomic profiles from this study indicated an 
exacerbated response of spaceflight intestinal cell cultures infected with Salmonella (e.g., 
higher induction of genes involved in response to LPS, oxidative stress, wound healing, 
apoptosis, and inflammation) as compared to the same cultures infected in synchronous 
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ground controls (4). These results were consistent with S. Typhimurium being more 
virulent in both spaceflight and spaceflight analog (RWV) culture (5, 64).

It is important to note that in the previous Salmonella virulence spaceflight experi­
ments, the bacteria were cultured in spaceflight and infections took place in mice after 
the Space Shuttle returned to Earth (5). In other words, the host was not exposed to 
the spaceflight environment as NASA does not allow in-flight infections of vertebrate 
animals. However, the non-vertebrate nematode Caenorhabditis elegans, which has been 
used extensively in terrestrial studies as a human surrogate model to study host-patho­
gen interactions (including with Salmonella) (227–229), is permitted by NASA for inflight 
infections. Accordingly, a recent study performed the first real-time virulence profiling 
using C. elegans as an intestinal model system to study the response to infection with 
S. Typhimurium when both the host and pathogen were simultaneously exposed to 
the spaceflight environment (163). This study profiled time-to-death, transcriptomic 
responses of both the host and pathogen, and countermeasure testing in order to 
understand infectious disease mechanisms, the risk for foodborne infections to the crew 
and efficacy testing of antimicrobial compounds (C.A.N., J.B., J.Y., C.M.O., unpublished 
data).

It should be noted that unlike the 1968 report of S. Typhimurium spaceflight cultures 
showing higher final cell densities as compared to ground controls, there were no 
significant differences in final cell densities of S. Typhimurium observed between any of 
the spaceflight and ground control studies described above. The observed differences 
between the 1968 Salmonella studies and those decades later could be due to the use of 
different S. Typhimurium strains, flight hardware, and environmental growth conditions 
between these spaceflight studies (5, 6, 203).

Serratia marcescens

Recently, it was shown that both spaceflight and spaceflight analog (RWV) cultures 
increased the virulence of a different enteric pathogen, S. marcescens, in an insect 
model (Drosophila melanogaster) (7, 230). Specifically, spaceflight-cultured bacteria were 
returned to Earth and stored at −80°C until used to infect D. melanogaster. The increased 
virulence observed in S. marcescens after spaceflight culture was transient as it did not 
persist after the initial subculture on the ground, indicating the bacteria were rapidly 
adapting to their different environmental conditions (7). Interestingly, follow-up studies 
to characterize a potential link between media nutrient utilization and the increased 
virulence of S. marcescens observed in response to RWV culture showed a direct link 
between asparagine utilization and the altered virulence phenotype (230).

Escherichia coli

An extensive number of spaceflight and spaceflight analog experiments have investi­
gated E. coli responses with a wide array of findings (12, 13, 53, 66, 97, 102, 199, 
226, 231–238). From a human health perspective, one of the most notable findings 
resulted from the Cytos 2 experiment aboard the Salyut 7 space station in 1982 in 
which the minimum inhibitory concentration of spaceflight-cultured E. coli to colistin 
and kanamycin was evaluated (11, 50). In this study, spaceflight-cultured E. coli had a 
greater resistance to both antibiotics when compared to control cultures grown on Earth 
(11). The Cytos-2 experiment also demonstrated that Staphylococcus aureus developed 
an increased resistance to oxacillin, chloramphenicol, and erythromycin as compared to 
ground controls. In comparison, subsequent separate studies, which investigated the 
antibiotic sensitivity of E. coli to gentamicin on agar slants, did not observe differences 
between spaceflight and ground control culture growth (12). The mechanism/s behind 
the difference in outcomes are not fully understood, but the authors speculated that the 
growth of their organism on agar, instead of in liquid culture, may have been a contribu­
ting factor. Another factor that could affect microbial responses during spaceflight was 
demonstrated in an extensive study of multiple E. coli growth curves by Klaus et al. 
performed over multiple missions (13). This study found that E. coli grown in space had a 
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shorter lag phase, longer logarithmic phase, and higher cell density than control cultures 
on Earth.

To obtain better insight into the mechanisms behind unexpected E. coli responses 
during spaceflight, spaceflight analog investigations using the RWV bioreactor have 
been extensively employed (226, 239). In one of the earliest studies, Fang et al. reported 
that the LSMMG culture of E. coli inhibited the production of the antibacterial polypep­
tide microcin B17 and increased the release of the compound into the media (93). This 
study was also the first to investigate and report that increased fluid shear mitigated 
this phenotype in the RWV. Additional secondary metabolite studies from this team 
confirmed the LSMMG culture in the RWV also inhibited β-lactam antibiotic production 
by Streptomyces clavuligerus (61).

Other E. coli studies have focused on pathogenic E. coli to determine how spaceflight 
analog culture affects their pathogenesis-related characteristics, including resistance 
to a variety of stresses, including low pH, osmotic, alcohol, and thermal stress (66, 
97, 102, 103), enterotoxin production (206), altered resistance to antibiotics (66, 240), 
and increased biofilm thickness (66). In a series of elegant RWV studies by Kim et al., 
enterohemorrhagic E. coli O157:H7 (EHEC) was cultured to determine both physiologi­
cal characteristics and transcriptomic responses to the LSMMG environment (232–234). 
In these studies, LSMMG-cultured bacteria exhibited increased cell size in a medium-
dependent fashion and were less resistant to thermal stress (55°C) relative to reoriented 
control cultures, possibly due to the downregulation of eight heat stress-related genes 
(232, 234). Investigation of changes in gene expression resulting from growth in LSMMG 
indicated an upregulation of genes in nutrient and energy metabolism, including the 
TCA cycle, glycolysis, and pyruvate metabolism compared to control cultures (233). 
Interestingly, growth in the LSMMG environment also showed an upregulation of the 
Shiga toxin 1 and toxin HokB genes (233). In a separate study investigating the adhesive-
invasive E. coli strain O83:H1 (AIEC), LSMMG-grown bacteria did not display changes in 
cell density or resistance to acid or osmotic stress as compared to control conditions; 
however, the LSMMG cultures did display increased resistance to thermal and oxida­
tive stress (102). In this same study, LSMMG culture increased the adhesion of E. coli 
O83:H1 to Caco-2 monolayers, but not invasion, as compared to controls. In addition, 
an early study by Carvalho et al. (241) showed that EHEC and enteropathogenic E. coli 
(EPEC) pathovars established a productive in vitro infection of 3-D intestinal models (as 
evidenced by loss of microvilli and pedestal formation/EPEC; pedestal formation and 
effacement/EHEC) when both the host and pathogen were simultaneously cultured 
in the RWV bioreactor. While the mechanism(s) behind these changes in different 
pathogenic strains of E. coli are not clear, they reinforce a strong association between 
alterations in fluid shear forces and virulence potential in these bacteria.

Vibrio species

Studies with Vibrio fischeri have focused on the ability of the spaceflight analog 
environment to alter the beneficial interaction between commensal microbes and their 
hosts. Foster et al. have undertaken a series of studies to investigate the relationship 
between the bioluminescent symbiont V. fischeri and its mutually beneficial interaction 
with its squid host, Euprymna scolopes, when both were grown simultaneously in the 
spaceflight analog RWV bioreactor (70). As part of their life cycle, V. fischeri colonizes the 
light organ of the squid and becomes luminescent after reaching a critical cell density 
(242, 243). Colonization of the squid light organ by V. fischeri is required for its proper 
development and function, while the luminescence provided by the bacteria serves as an 
anti-predator camouflage for its host (244). When cultured under LSMMG conditions, the 
symbiont V. fischeri enhanced the development of the squid light organ, as evidenced 
by an accelerated onset of bacterial-induced cell death and increased sensitivity of the 
light organ to LPS from V. fischeri, as compared to the reoriented control (70). Follow-up 
studies demonstrated that apoptotic gene expression profiles and caspase activity were 
upregulated during LSMMG culture, which is consistent with the accelerated apoptosis 
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phenotypes previously observed in the squid light organ during culture under these 
same conditions (245).

Given the link between Hfq as a central regulator of bacterial pathogen responses 
to both spaceflight and/or LSMMG culture (5, 8, 65, 69),  subsequent studies using 
V. fischeri  showed that LSMMG culture also differentially regulated the expression 
of hfq  in this bacterium and that squid infected with an hfq  mutant exhibited 
alterations in their developmental phenotype during LSMMG culture (195). While 
the latter observation is specific to this particular host-symbiont model system, the 
findings from V. fischeri  analog studies suggest that host interactions with beneficial 
microorganisms which are important for physiological homeostasis could be altered 
in a spaceflight environment.

Pseudomonas aeruginosa

P. aeruginosa has been investigated in multiple spaceflight and spaceflight analog 
studies both due to its potential hazard to both astronaut health (48) and spacecraft 
systems (246). P. aeruginosa was responsible for a life-threatening urinary tract infection 
during the Apollo 13 mission (46, 48) and has been isolated from Apollo crewmem­
bers (48) as well as from the ISS environment (247). Early studies by McLean et al. 
confirmed the ability of P. aeruginosa to form biofilms on polycarbonate membranes in 
the spaceflight environment (10). More recently, Kim et al. investigated the architecture 
of P. aeruginosa biofilms when grown during spaceflight (9). These important studies 
showed that spaceflight culture increased viable cell densities and biomass in biofilms. In 
addition, spaceflight appeared to alter biofilm architecture, resulting in unique column-
and-canopy structures that differed significantly from biofilms formed in the ground 
control. The authors used wild type and motility mutant strains in this study and 
reported that the unique biofilm structure formed in spaceflight-cultured P. aeruginosa 
was dependent on flagellar, but not type IV pili motility (9, 18).

In another spaceflight study, Crabbé et al. investigated the transcriptomic and 
proteomic responses of planktonic P. aeruginosa as compared to otherwise identical 
Earth-based controls (8). In this experiment, P. aeruginosa differentially regulated 167 
genes and 28 proteins. When compared to ground-based controls, the investigators 
found an upregulation of the genes that encode for the lectins, LecA and LecB, which 
play a role in the bacterial adhesion process to eukaryotic cells. They also found an 
upregulation of the virulence-related gene rhlA, which encodes rhamnosyltransferase 
I, an enzyme involved in rhamnolipid surfactant biosynthesis (8). Notably, as shown 
previously with S. Typhimurium, this study also identified Hfq as a key global transcrip­
tional regulator of the spaceflight response, suggesting the first spaceflight-induced 
regulator acting across different bacterial species (5).

As with Salmonella and E. coli, P. aeruginosa has been extensively studied using 
spaceflight analog culture systems (68, 100, 248) with findings that have implications 
for both astronaut health and habitat sustainability. In response to LSMMG culture 
in the RWV, P. aeruginosa formed loose self-aggregating biofilms as compared to the 
phenotype formed in the reoriented control, wherein biofilms were tightly attached to 
the gas-permeable membrane (68). In addition, LSMMG upregulated the expression of 
P. aeruginosa genes encoding virulence factors, e.g., rhamnolipids, elastase, and the rhl 
quorum sensing system (68). In a separate RWV study, growth of P. aeruginosa in LSMMG 
conditions elevated alginate production, and also increased heat and oxidative stress 
resistance, compared to controls. Analysis of these cultures revealed 134 differentially 
regulated genes, including genes involved in microaerophilic/anaerobic metabolism, 
stress resistance, and motility. As observed in spaceflight culture, the RNA-binding 
protein Hfq also appeared to be a key regulator of many of the differentially regula­
ted genes. In addition, LSMMG culture induced an upregulation of AlgU-controlled 
transcripts, including those encoding stress-related proteins (100). The upregulation 
of AlgU is notable as it is essential for alginate production and biofilm formation, an 
important virulence factor in P. aeruginosa.
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S. aureus and other Gram-positive bacteria

Early research into the response of Gram-positive microorganisms dates back to early 
spaceflight experiments using model organisms, such as Bacillus subtilis, to better 
understand concepts such as how spaceflight affects bacterial cell division and biomass 
(249), viability in response to true space radiation (250), and bacterial response to both 
vacuum and radiation in space (251, 252). Studies with B. subtilis continue to provide an 
excellent model for the effect of spaceflight and spaceflight analogs on spore-forming 
bacteria (53, 199, 235, 253–255). Gram-positive bacterial studies have often provided 
insight into astronaut health and vehicle sustainability, by investigating factors such as 
changes in antibiotic resistance (11, 50, 256) and its response to antimicrobial surface 
coatings (257).

The response of S. aureus to the spaceflight environment has gained a great deal 
of attention from a human health perspective due to its ubiquitous nature in the 
environment (34, 50, 258, 259) and its presence and ability to be readily passed 
between crewmembers (260–262). While certain spaceflight experiments have provided 
important information, much of our understanding of potential S. aureus responses 
to spaceflight have been acquired using spaceflight analog systems. For example, a 
study by Rosado et al. identified decreased production of the pigment, and virulence 
factor, staphyloxanthin in LSMMG-cultured S. aureus (263). In addition, the authors 
observed a decrease in transcription of the hla, which encodes the production of 
alpha toxin. Separate studies by Castro et al. confirmed the decrease in staphyloxan­
thin and also reported dramatic increases in extracellular polymeric substances, and 
repressed virulence characteristics, such as increased susceptibility to oxidative stress 
and decreased survival in whole blood (69). Interestingly, the LSMMG culture of S. aureus 
resulted in a downregulation of the RNA chaperone Hfq, which parallels low-fluid-shear 
responses of certain Gram-negative organisms (5, 8, 69, 195, 264). Collectively, the 
findings on LSMMG-grown S. aureus suggest a less virulent phenotype, leading to the 
postulation that microbial responses to the spaceflight and spaceflight analog environ­
ment may differ depending on the benefits to each specific microorganism.

Recently, Jang et al. demonstrated that spaceflight analog culture (RWV) significantly 
altered the membrane lipid profile of S. aureus and increased its sensitivity to membrane-
disrupting antimicrobial compounds as compared to control conditions (75). Specifically, 
LSMMG culture resulted in profile shifts of both branched and straight-chain fatty acids 
in a manner known to increase cell membrane disorder and fluidity (265, 266). Based on 
this observation, the authors reasoned that LSMMG culture would increase the sensitivity 
of S. aureus to treatment with membrane-disrupting agents, which was demonstrated 
using daptomycin, sodium dodecyl sulfate, and violacein (75).

Streptococcus pneumoniae is expected to be carried as a commensal part of a healthy 
astronaut’s normal flora but has the potential to cause a wide range of diseases, 
especially if the immune system is compromised. Diseases caused by S. pneumoniae 
include otitis media, meningitis, pneumococcal pneumonia, and bacteremia (267, 268). 
Transcriptomic profiling of S. pneumoniae compared cultures grown in microgravity 
to both traditional ground controls and cultures grown in LSMMG (267). The results 
indicated a clear difference in gene expression across a range of diverse functional 
groups between spaceflight-grown cultures and the two control conditions (267). The 
results from this spaceflight study also revealed some similarities between earlier RWV 
studies profiling the impact of LSMMG culture on S. pneumoniae, which also indicated 
differential expression in genes encoding diverse functional groups as compared to 
controls (269).

Streptococcus mutans is a primary causative agent of dental caries, and accordingly, 
its response to changes during spaceflight is of interest to NASA. Studies by Orsini et 
al. indicated that S. mutans cultured in the LSMMG environment was more susceptible 
to oxidative stress than control cultures (101). Interestingly, this difference was growth 
phase-dependent, only being observed during the late-stationary phase. This study also 
investigated transcriptomic profiles and identified 247 differentially regulated genes 
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(153 upregulated and 94 downregulated), including genes associated with carbohydrate 
metabolism, translation, and stress responses (101).

The vast majority of microbial spaceflight and spaceflight analog studies have been 
short duration in length (hours to several days) due to limitations in power, volume, 
crew time, and hardware capabilities in performing biological spaceflight experiments. 
Given the relatively short generation time of microorganisms, long-duration, multigener­
ation studies enable experimental evolution approaches in which mutations and genetic 
exchange or rearrangements can be coupled with natural selection (270). Given the 
importance of microbial changes during anticipated prolonged spaceflight and future 
lunar bases, long-duration studies have been proposed in the 2011 and 2023 NASA 
Decadal Report (85, 271). Long-duration studies are challenging, and data interpretation 
and conclusions drawn from them can be difficult due to challenges in preventing 
microbial contamination and the need for appropriate controls. Only a few studies have 
examined long-duration alterations in microbial mutation rate and heritable changes 
resulting from long-duration growth in the spaceflight or spaceflight analog environ­
ment (73, 239, 253, 256, 272), including a study sequencing E. coli that had been 
cultured in the RWV bioreactor under LSMMG conditions for over 1,000 generations 
(239). Sequencing of these LSMMG cultures revealed 16 distinct mutations relative to 
the zero generation control; however, as no reoriented control was performed, additional 
studies are needed to determine if any of these mutations are unique to the LSMMG 
condition (239). In another notable long-duration study, Fernander et al. evaluated the 
impact of LSMMG culture (as compared to the reoriented control) on S. mutans (73). 
In this study, S. mutans was grown in the RWV for 100 days to determine how this 
microorganism adapts to the LSMMG environment. The authors provide evidence that 
multiple variants of S. mutans were developed in response to growth in the LSMMG 
environment, influencing heritable phenotypes such as adhesion and acid tolerance. 
Importantly, none of the unique genetic variants identified in this study were present in 
all four of the biological replicates (73), reinforcing the need for appropriate controls and 
multiple biological replicates for future investigations in spaceflight.

Mycobacterium marinum

The response of several other microorganisms that are relevant to human health and 
habitat sustainability has been investigated during spaceflight. For example, LSMMG 
studies of the waterborne pathogen, M. marinum, which causes infections in fish and 
humans, indicated a faster transition to the stationary phase and greater sensitivity 
to oxidative stress during RWV culture as compared to the reoriented control (273). 
Transcriptomic data suggested a downregulation of metabolism, an increase in lipid 
degradation, and increased chaperone and mycobactin expression as compared to 
controls. Mycobactin proteins play an important role in mycobacterial pathogenesis 
and virulence by serving as siderophores for iron acquisition in the infected host and 
are essential for growth in macrophages (274, 275). Based on these data, Abshire et 
al. proposed that nutrient deprivation could be a signal to the cells in the LSMMG 
environment and that the sigma factor SigH has a role in modulating transcriptional 
changes.

The LSMMG response of M. marinum is important and relevant to human health, as 
it is an important model for human pathogens, such as M. tuberculosis and M. avium 
(273). Notably, molecular analysis of spacecraft indicated the presence of Mycobacterium 
virulence operons on ISS (208) and the presence of M. avium in water samples from 
the Mir Space Station (276), suggesting a presence of mycobacteria not detected using 
culture-based monitoring. Of additional medical relevance, Clary et al. demonstrated 
increased survival to rifampicin when grown in the RPM (186).

Candida albicans and other fungal studies

One of the earliest spaceflight investigations of yeast used cultures of the model 
eukaryotic microbe, Saccharomyces cerevisiae, that had been collected from the Microbial 
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Ecology Evaluation Device (MEED) aboard the Apollo 16 lunar mission (277). In this 
rare study beyond LEO, S. cerevisiae exposed to the deep space environment-induced 
dermal lesions in mice and recovered from these lesions at higher levels as compared 
to ground controls (49). It is important to note that these cultures were exposed to 
natural ultraviolet radiation (278) during the spaceflight mission and were not immedi­
ately tested after landing. In addition, S. cerevisiae showed increased uptake of phos­
phate in response to spaceflight (279). Classically, S. cerevisiae has not been considered 
a pathogenic organism; however, these findings suggested the potential of clinical 
implications associated with microbial growth in the spaceflight environment.

Characterization of the transcriptomic and phenotypic profiles of the opportunistic 
dimorphic fungal pathogen, Candida albicans, in response to spaceflight culture showed 
global changes in these properties as compared to synchronous ground controls (14). 
In response to environmental signals, C. albicans transitions between the single-cell 
yeast and filamentous form, a process which contributes to virulence (280). In response 
to spaceflight culture, a large number of genes in C. albicans representing diverse 
functional categories were differentially regulated, including those involved with biofilm 
formation, cell adhesion, filamentous growth, cell budding, actin cytoskeleton organi­
zation, cell cycle regulation, transport and multi-drug efflux proteins, drug resistance, 
and oxidative stress. Interestingly, expression profiles of several of these genes sugges­
ted the possibility that virulence-related phenotypes in C. albicans might be altered 
during spaceflight culture; however, this functional phenotype has not been documen­
ted. Phenotypic validation of cellular morphology using microscopic imaging and flow 
cytometry was in agreement with the observed spaceflight-induced expression of 
genes involved in cell aggregation (relevant to biofilm formation), random budding, 
and cell size. In addition, spaceflight culture of C. albicans induced the expression 
of the gene encoding transcriptional regulator Cap1 and differentially regulated over 
30% of the Cap1 transcriptional regulon. This suggests a possible role for Cap1 in 
regulating the spaceflight response of C. albicans, given its alignment with transcrip­
tomic and phenotypic profiles associated with spaceflight culture (14). Relevant to the 
spaceflight-enhanced expression of C. albicans genes encoding resistance to antimicro­
bial compounds, a subsequent spaceflight experiment by Nielsen et al. demonstrated an 
increased resistance of C. albicans when challenged with the antifungal drug amphoteri­
cin B (281).

In agreement with spaceflight results, ground-based analog studies in the RWV 
bioreactor showed that C. albicans displayed random budding and clumping pheno­
types in response to LSMMG culture as compared to control conditions (202), which is 
consistent with phenotypes observed for this same organism during spaceflight (14). 
Moreover, LSMMG culture increased filamentation and biofilm formation in C. albicans, 
with a concomitant morphological transition from the yeast to filamentous (hyphal) form 
which coincided with changes in the expression of genes involved in this transition 
(202). Interestingly, the culture of the model yeast S. cerevisiae in LSMMG conditions 
showed changes in the expression genes associated with budding, cell polarity, and cell 
separation (201). In addition, S. cerevisiae in LSMMG culture increased random budding 
patterns and tendency to clump/aggregate under these conditions, which supports 
morphological changes reported for S. cerevisiae in response to spaceflight culture (15, 
16), as well as C. albicans responses to culture in both LSMMG and spaceflight conditions 
(282).

As with yeast, filamentous fungi have also displayed unexpected responses to 
spaceflight and spaceflight analog culture. Early investigations were primarily survival 
studies, including those using Penicillium roqueforti during the Gemini Program (283, 
284) and Tricophyton terrestre and Chaetomium globosum in the MEED experiment 
during the Apollo Program (279, 285). More recent studies have investigated changes 
in filamentous fungal characteristics, including many comparing strains isolated from 
ISS with different terrestrial strains of the same species that had not flown (56, 286–
288), thus limiting the exact effect of spaceflight on the organisms. However, in 2019, 
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Romsdahl et al. reported a comparison of Aspergillus nidulans grown on ISS with an 
otherwise identical ground-cultured control (289). The authors observed significant 
changes in the expression of proteins associated with stress response, carbohydrate 
metabolic processes, and secondary metabolite biosynthesis, as well as alterations 
in specific regions of the genome (e.g., insertions, deletions). A separate study by 
Blachowicz et al. investigated genomic, transcriptomic, and metabolomic alterations 
in Aspergillus niger cultured on ISS compared to ground-cultured controls (290). The 
authors identified multiple changes in protein expression associated with carbohydrate 
metabolism, stress response, and cellular amino acid and protein catabolic processes 
in the strain cultured on the ISS. Interestingly, the heritable production of the antioxi­
dant, pyranonigrin A, was increased in the ISS-cultured strain, compared to the ground 
control strain (290). Subsequent investigation by the authors provided evidence that the 
elevated levels of pyranonigrin A resulted from genetic changes, that they propose could 
have been induced through selection to adapt to elevated radiation levels (291).

Spaceflight analog studies of filamentous fungi have also been investigated (292–
295). For example, Jiang et al. observed an increase in organic acids produced by 
Aspergillus carbonarius grown in a clinostat (294). Subsequent studies also demonstrated 
that this increase in organic acids could increase the corrosion potential of this organ­
ism (295). Due to the nature of filamentous fungal growth and corrosion testing, the 
organisms were grown on agar Petri dishes that were rotated in the clinostat (294, 295). 
While some evidence suggests solid vs liquid growth conditions may influence microbial 
responses to the spaceflight environment (53), these articles identify factors, such as 
alterations in the potential of microbially influenced corrosion, that should be considered 
and investigated to maintain the stability of space habitats.

Microbial studies investigating spacecraft habitat sustainability

One key benefit of the culture-based approach currently used for environmental 
monitoring aboard the ISS is that it enables the development of a historical collection 
of microflora that can be used for subsequent longitudinal investigations of microbial 
changes over time in the unique spaceflight environment. Notable examples of this 
approach to use the ISS as a “microbial observatory” are elegant studies that character­
ized functional phenotypes from NASA-archived bacterial isolates collected over several 
years from the ISS potable water system (58–60). These independent studies shared the 
goal of identifying changes in bacterial characteristics over time that could negatively 
impact astronaut health and life support systems (58–60).

Using a six-member model microbial community of ISS potable water isolates 
[Cupriavidus metallidurans, Chryseobacterium gleum, Ralstonia insidiosa, Ralstonia pickettii, 
Methylorubrum (Methylobacterium) populi, and Sphingomonas paucimobilis], Thompson 
et al. documented the contributions and interactions of individual community members 
to the robustness and resilience of multispecies microbial biofilms and found that 
no individual species was solely responsible for polymicrobial biofilm formation (58). 
Specifically, the deletion of individual members from the consortium had no significant 
effect on the overall biofilm population although the species distribution was altered. 
Furthermore, the introduction of species-specific phage or predatory bacteria into 
pre-formed biofilms did not selectively remove specific bacterial community members 
under the conditions of this study (58).

In a separate study, Yang et al. performed longitudinal phenotypic characterizations 
of multiple ISS potable water bacterial isolates collected between 2009 and 2015 
(R. pickettii, S. sanguinis, C. metallidurans, B. cepacia, R. insidiosa, Methylobacterium 
species, Bradyrhizobium species, Mesorhizobium species, and S. aureus). These studies 
characterized functional phenotypes of the bacteria as pure cultures or as multispecies 
consortia, including biofilm formation, structure, morphology, and composition (e.g., 
microbial composition and community stability), metabolism, hemolysis, and susceptibil­
ity to antimicrobial compounds (60). An association was observed between microbial 
adaptation over time to the microgravity environment, as the interactive behaviors of 
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some bacterial isolates appeared to depend on when they were collected from the ISS 
in the same year or different years. The authors hypothesized that for these specific 
bacteria, a shared period of coexistence in the ISS water system might influence their 
interactions.

A study by O’Rourke et al. sequenced the genomes of 24 Burkholderia isolates that 
had been collected over 4.5 years from the ISS potable water supply, identifying 19 of 
these isolates as B. cepacia and 5 as B. contaminans, with evidence that these two groups 
arose from the same founding populations (59). Phenotypic traits of these isolates were 
evaluated and compared to terrestrial reference strains. While the B. cepacia strains 
isolated from the ISS did not display fungal inhibition or hemolysis characteristics, the 
B. contaminans ISS isolates exhibited hemolysis and anti-fungal properties to certain 
degrees. Interestingly, these B. contaminans isolates also displayed higher levels of 
hemolytic activity than their terrestrial control.

These types of observations have provided new insight into how microbial biofilms 
might develop and persist over time under microgravity conditions and are essential 
to predict emergent and non-intuitive phenotypes observed in the context of multi-
species consortia, which cannot be fully predicted by sequencing studies alone. For 
example, nutrient levels coupled with microgravity conditions have also been implica­
ted in the growth and biofilm formation capabilities of ISS isolates (296), suggesting 
possible approaches to address biofilm formation during spaceflight. Along these lines, 
a new series of spaceflight studies focused on biofilm control have been conducted 
to investigate how polymicrobial species form biofilms on spacecraft materials, induce 
corrosion, and alter resistance to disinfectants (2, 35, 297–299).

HUMAN HEALTH DURING SPACEFLIGHT

Risk of infectious disease in space

NASA has historically implemented stringent preventative measures to mitigate the risk 
of infectious and other microbially associated disease, including preflight microbiological 
monitoring of spacecraft potable water systems and habitable volume air and surfaces 
(35, 247, 300–302). In a similar fashion, cargo bags and spaceflight hardware are also 
tested for potential microbial hazards to the astronauts (303). Non-thermostabilized 
foods consumed by the crew are also monitored for microbial contamination prior 
to spaceflight (304). In addition, biosafety assessments are performed for spaceflight 
experiments that contain potential biological hazards (303).

One of the most effective mitigation approaches to protect astronauts from infectious 
disease has been the Health Stabilization Program (HSP) first formally implemented in 
the early 1970s (305) after a series of infectious disease incidents during the Apollo 
Program, including upper respiratory infections inflight during Apollo 7 (3 crewmem­
bers); infectious gastroenteritis inflight and preflight during Apollo 8 (3 crewmembers); 
upper respiratory infections preflight during Apollo 9 (3 crewmembers); upper respi­
ratory infections preflight during Apollo 10 (2 crewmembers); and rubella exposure 
preflight (306). Perhaps, the most visible incidence of infection during spaceflight 
occurred during Apollo 13 in which a crewmember suffered a severe urinary tract 
infection caused by P. aeruginosa (48). Treatment with antibiotics (furadantin and 
pyridium) during the mission was ineffective (48). While the hallmark of the HSP has 
been astronaut quarantine, this program was also enhanced by employee awareness of 
infectious disease risk and safety precautions taken prior to spaceflight. Once implemen­
ted, its success was immediately evident. Before the HSP, 57% of Apollo crews experi­
enced infectious disease during the 3-week period prior to launch (306). After initiation 
of the HSP, only skin infections were recorded in this 3-week period during the Apollo 
Program (306).

Even with these stringent precautions, the risk and incidence of the disease has not 
been eliminated (48, 307–309). While diagnosing infectious disease at remote locations 
can be challenging, epidemiological evaluations of Space Shuttle Program data for 
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missions STS-1 through STS-89 indicated that infectious disease accounted for 1.4% of all 
medical events (not including skin and subcutaneous tissue) (308). Incidents of infectious 
disease for Space Shuttle Program astronauts included fungal infection, flu-like illness, 
urinary tract infection, aphthous stomatitis, infectious gastroenteritis, subcutaneous 
skin infection, and other viral diseases based on post-flight debriefs (310). In a sepa­
rate evaluation of infectious disease and allergic symptom rates on ISS, the incidence 
of infectious disease through 2016 was estimated to be 3.4 events/flight year (309). 
Importantly, these data reflect infectious disease rates and types under the restrictive 
regulations NASA has for its astronauts. An overlooked but critical contributor to the risk 
of infectious disease during spaceflight is the “stacking of risks” associated with different 
aspects of the spaceflight environment. For example, the combination of a dysfunctional 
immune system, alterations in microbial virulence, physiological and psychological stress 
associated with spaceflight missions, closed confined spaces, reduced gravity, radiation 
levels, and exposure to celestial dusts may combine to increase the overall infectious 
disease risk in ways that are not expected with any one factor.

As human space exploration transitions to more distant locations like the moon and 
Mars with traditional NASA career astronauts, the number of commercial civilian and 
military space travelers in LEO with non-traditional astronauts will increase robustly over 
the coming years. As many of these individuals will have underlying health conditions 
that would have been identified by NASA for a traditional career astronaut, the inclusion 
of non-traditional astronauts into space travel will likely increase the rates and types of 
infectious disease events (311). This change in the type of space traveler will create a new 
dimension of occupational health for the new civilian astronaut workforce to understand 
the space environment on human health and habitat sustainability.

Immune system dysfunction in space

Multiple reviews have described the effects of spaceflight on immune function and have 
consistently documented that the immune response is altered during spaceflight on 
both short and long mission durations (29, 33, 312). Spaceflight-induced dysregulation of 
both innate and adaptive immune responses has been observed in humans and animals, 
and ground-based spaceflight analog models have validated some of these findings 
(313–318). Likewise, alterations in the immunobiology of cell culture model systems have 
also been reported in response to both spaceflight and analog conditions (31, 319). 
Collectively, the negative impact of spaceflight on host immune functions and enhanced 
alteration of virulence and pathogenesis properties in some microorganisms suggests 
an increased risk for infectious disease events in spaceflight [reviewed in references (29, 
320)].

Documented spaceflight-induced changes to the immune system have included 
alterations in lymphoid tissue; the number, proliferation, and function of immune cell 
populations involved in innate immunity (neutrophils, monocytes, macrophages, and 
NK cells) and adaptive immunity (B and T lymphocytes), as well as the production 
of cytokines and immunoglobulins. A large body of evidence indicates a decrease in 
the cell-mediated immune response during spaceflight (29), including altered cytokine 
profiles and a change in T-cell subsets indicating a shift from Th1 toward a Th2 immune 
response (321), the latter of which indicates a greater potential risk for infections by 
intracellular pathogens. Furthermore, spaceflight-induced alterations in astronaut blood 
samples indicate that neutrophil phagocytic and oxidative functions are diminished, 
as is the ability of monocytes to phagocytose a non-pathogenic strain of E. coli and, 
subsequently, elicit an oxidative burst and degranulate (313, 314, 322). Natural killer cell 
cytotoxicity has also been shown to be diminished by spaceflight (29, 322), as has the 
production of interferon (29, 323).

In addition, there is evidence of chronic low-level inflammation in astronauts 
during long-duration spaceflight (324). Consistent with a decrease in immune function, 
reactivation of latent herpes viruses, including Varicella Zoster, Epstein Barr, HSV-1, 
and cytomegalovirus has been reported in astronauts (25–28, 325–329). In addition, 
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transcriptomic profiling of the whole blood of astronauts (both male and female) 
in response to spaceflight showed differential regulation of stress response genes, 
including those important for oxidative stress, DNA repair, detoxification, and protein 
folding/degradation, several of which are associated with modulation of the immune 
system and protection against microbial infection (330). Although the clinical correlation 
of these immune changes to infectious disease incidences in spaceflight has not been 
fully established, they are of concern, and the biological importance of the immunologi­
cal changes induced by spaceflight with regard to resistance to infection remains to be 
established.

Many studies involving the effects of spaceflight on immunity have been limited 
by the use of pre- and post-flight crew samples obtained from short duration space 
missions, with no samples taken in-flight. Accordingly, there are comparatively fewer 
studies that have utilized samples acquired during spaceflight, creating many inconsis­
tencies within the current scientific literature. This inconsistency is further exacerbated 
by the small number of data points and different durations of spaceflight. However, 
recent investigations from crew members of long duration space missions (3 months and 
longer) have used blood samples drawn in flight (32, 324). Analysis of in-flight sam­
ples indicated that immune dysfunction persisted during long-duration missions, with 
alterations potentially leading to immune hyperactivity (which may result in risks such as 
hypersensitivities or autoimmunity) and immune hypoactivity (which suggests increased 
risks for infectious diseases, viral reactivation, and other disorders) (32, 324). Further­
more, elevated levels of inflammatory cytokines observed in ISS astronauts during 
long-duration missions suggest that multiple physiological adaptations persist during 
spaceflight, including inflammation and leukocyte recruitment (32). Further investigation 
is necessary to better understand the mechanisms of these effects on the immune 
system induced by spaceflight in order to develop countermeasures to reduce infectious 
disease risks for the crew.

Although the first human traveled to space over 60 years ago, the number of people 
who have flown in space is still small. At the time of this article, only a few more than 
600 people have traveled to space, which is an average of 10 individuals per year. 
The vast majority of these individuals have been professional career astronauts whose 
spaceflight missions have almost exclusively been in the microgravity environment of 
LEO and within the protective magnetic field of LEO, which protects against radiation. 
Only a handful of astronauts from the Apollo moon missions have traveled to deep space 
locations that are associated with different partial gravity conditions and outside of the 
protective radiation zone, and these were short-duration missions with the crew briefly 
exposed to these conditions. Future deep space exploration and longer missions to the 
Moon and Mars will expose humans to these stressful conditions for extended periods 
of time, which is a major health concern. In addition, the rapid transition to commercial 
civilian spaceflight in LEO and its reliance on individuals often having underlying health 
conditions which are not in alignment with those of career astronauts increases the risk 
for microbial health threats.

Crew microbiome and human pathophysiology

The diverse microbial ecosystems associated with the human body are vital for 
regulating the balance between health and disease. Numerous terrestrial studies have 
shown that microbiota composition and function can be modulated by a variety of 
intrinsic and extrinsic factors (e.g., sex, age, nutrition, psychological stress, infection, 
medication, radiation) (331). As astronauts are subjected to a unique combination 
of stressors, understanding how both short- and long-term space travel alters the 
composition and function of astronaut microbiota is important for the design of 
strategies that ensure optimal physical and mental health.

Since the early days of human spaceflight, astronauts and cosmonauts have been 
monitored for alterations in their microbial flora (20, 48, 262, 332–335). Excellent 
reports by Taylor et al. detailed the specific microbial shifts observed during these early 
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missions, with a focus on the Apollo (48) and Skylab (47) programs. These foundational 
studies, which used culture-dependent approaches, routinely demonstrated increased 
total microbial loads, particularly for Gram-positive opportunistic pathogens, such as 
Staphylococcus and Streptococcus spp., as well as opportunistic fungal pathogens like C. 
albicans (20, 48). Of additional concern was the decrease in protective commensal flora, 
including Lactobacillus species. Of interest, microbial monitoring was performed not only 
to assess changes in the presence and abundance of potential pathogens but also to 
exclude potential contaminants in material returned from the lunar surface (46, 48).

The advancement of culture-independent sequencing technologies allowed for the 
broader detection of alterations in the crew microbiome. During the NASA Twins Study, 
twin astronauts were monitored over the course of 1 year for alterations in their gut 
microbiome composition (along with a wide range of physiological and -omics data), 
with one twin living in space and the other on Earth (57). This study revealed slight 
but significant spaceflight-associated shifts in fecal microbiota composition relative to 
pre-flight and post-flight levels. A higher ratio of Firmicutes to Bacteroides was observed 
during spaceflight relative to pre-flight or post-flight levels; an effect not observed in 
the ground-based subject over the same time period. In addition, in-flight microbial 
community taxonomic structure and functional gene content was significantly different 
from pre- and post-flight samples but returned to normal within 6 months. Metabolomic 
profiling indicated a spaceflight-associated decrease in some microbial metabolites with 
known anti-inflammatory properties.

During the Astronaut Microbiome Project, Voorhies et al. longitudinally characterized 
the impact of spaceflight on microbiomes of nine astronauts living aboard the ISS for 
6–12 months (19). Skin, saliva, nostrils, and feces were sampled and profiled using 16S 
analysis. In parallel, astronauts were monitored for alterations in cytokine expression and 
viral reactivation by sampling of blood and saliva, respectively. Spaceflight-associated 
alterations in microbiome composition were observed for all sites sampled relative to 
pre-flight levels. Alterations in intestinal microbiota indicated increased diversity for 
almost all crew members, which eventually returned to pre-flight levels after return. 
Spaceflight was also found to alter the abundance of seventeen GI genera. Of interest, 
there was a greater than fivefold inflight reduction in abundance for some genera with 
anti-inflammatory properties, including Akkermansia, Fusicatenibacter, and Pseudobuty­
vibrio. This correlated with in-flight increases in some pro-inflammatory cytokines in 
the crew. The GI microbiome beta diversity analysis revealed an increased similarity 
across crew members during flight, likely due to commonalities in their diets during 
their missions aboard ISS. A key consideration in microbiome analysis within a closed 
environment is increased potential for transmission from the habitat to the crew member 
and vice versa. Previous studies using culture-based approaches have shown that 
microbes like S. aureus were readily passed between crewmembers (260–262). The study 
by Voorhies et al. and other sequencing investigations have also observed evidence for 
transmission between crew members and their environment (19, 336–338).

Short-duration spaceflight has also been shown to alter the composition of astronaut 
gut microbiota (339). These changes are not unexpected, as the human microbiome is 
quickly altered by environmental factors and can alter the antibiotic resistance pro­
files (340–343). Metagenomic sequencing of stool samples collected from astronauts 
following Chinese spaceflight missions revealed increases in the abundance of Firmi­
cutes and Bacteroides after spaceflight. Post-flight decreases in probiotic taxa, includ­
ing Lactobacillus and Bifidobacterium, were also reported. In addition, there were also 
fluctuations of genes belonging to multiple gene groups, including those involved in 
virulence, antibiotic resistance, envelope biogenesis, and biofilm formation.

Sequencing analysis of the salivary microbiome of astronauts indicated alterations in 
Streptococcus, Proteobacteria, and Fusobacteria (344). In general, microbiome diversity 
and richness were found to increase with spaceflight and return back to normal 
post-flight. However, the diversity of Streptococcus was found to decrease relative to 
pre- and post-flight levels and did not entirely return to pre-flight levels after return. The 
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authors also observed a correlation between the salivary microbiome in the presence 
and absence of viral reactivation in crew members.

Similar to terrestrial studies, person-to-person variation has also been observed for 
spaceflight microbiome analyses. Morrison et al. collected samples from different body 
locations (skin, nose, ear, mouth, saliva) from four astronauts over two consecutive 
missions (345). These samples were analyzed in tandem with metagenomic sequencing 
and a high-density DNA microarray. When the data for all astronauts were analyzed 
as a group, the authors observed no significant differences in the number or relative 
abundance of taxa. However, analysis of individual astronauts revealed flight-associ-
ated changes. In salivary samples, two astronauts displayed an increased abundance 
of certain commensal microbes such as Prevotella, with a concomitant decrease in 
abundance in other commensals. Interestingly, an elfamycin resistance gene and CfxA6 
beta-lactam marker were found to increase in abundance in response to spaceflight.

Collectively, studies have generally reported alterations in astronaut microbiomes 
following both short- and long-duration missions. However, the potential positive or 
negative health consequences associated with these changes and the use of microbiome 
data as a diagnostic tool for crew health have yet to be determined.

Current food systems

Another critical aspect of space missions that hold the potential to impact astronaut 
health in both potentially positive and negative ways is the spaceflight food system (346, 
347). From the beginning of human spaceflight programs, microbiological considera­
tions influenced the processing, packaging, and storage of spaceflight foods (348, 349). 
Notably, the Hazard Analysis Critical Control Point system that is commonly used in the 
food industry today was developed through a collaboration between NASA, the Pillsbury 
Company, and the Natick Laboratories of the U. S. Armed Forces to prevent foodborne 
illness (349). Samples from each lot of non-thermostabilized foods are microbiologically 
monitored to ensure the quality of food supplied to the astronauts (303, 304). Pre­
flight analyses of food samples have detected potentially pathogenic microorganisms, 
including S. Typhimurium, S. aureus, Enterobacter cloacae, and Cronobacter sakazakii 
(350).

HABITAT SUSTAINABILITY

The microbiology of the built environment takes on pivotal importance during human 
spaceflight, as microbial processes that affect the integrity of the spacecraft, life 
support, or other critical functions within the habitat (e.g., communications) can become 
life-threatening. Early problems associated with microorganisms identified on human 
spaceflight vehicles included corrosion and fouling of systems onboard Mir and other 
spacecraft, as well as life support components of space suits (351). Unwanted moisture 
accumulation, material design, and housekeeping concerns were identified as risk factors 
and probable causes of these problems (351). While many mitigation strategies such as 
condensation reduction, improved housekeeping, and advanced construction materials 
and surface coatings are now employed, microbial monitoring remains an important task 
for the evaluation of safety in space habitats. As is also the case on Earth, microorganisms 
associated with spaceflight have many potential benefits for habitat sustainability. These 
can include potential uses in life support and applications in future space manufacturing 
and other industries. In this section, we address several microbial issues related to habitat 
sustainability in space and identify key future challenges. We focus primarily on the 
ISS as a model space habitat. While the Chinese space station, Tiangong, is currently 
operational, no microbiological data on resident flora is available at this time (352).

Function and integrity of spacecraft and onboard life support systems

There are a number of factors that are involved in the design and construction of 
spacecraft [reviewed in reference (353)]. Aside from the structural and propulsion 
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components, other key equipment is associated with navigation, communication, 
and life support spacecraft functions. Spacecraft-associated microbial problems were 
prominent in the former space station, MIR, which damaged structural materials and 
caused equipment malfunctions, including fungal growth that interfered with space-
to-ground communications (354). Microbial contamination is also present on the ISS, 
including biofilm-associated fouling in the water recovery system (WRS) (246, 297) and 
a fungal contaminant of ISS surface material on which exercise clothes were dried 
(355) (Fig. 3). While housekeeping and other microbial mitigation tasks have been 
optimized for the ISS, there are a number of practical considerations that will need to be 
addressed in more distant space mission locations. Included are items such as cleaning 
and sanitation supplies and the potential for additive manufacturing technologies for the 
preparation or repair of equipment (356).

Microorganisms in the spacecraft environment: microbial monitoring

The ISS has been continuously inhabited since November 2000 (34). Present in the 
spacecraft are the microorganisms that were carried to the ISS as part of the crew’s 
natural microbial flora, as well as organisms that were associated with cargo, supplies, 
and those introduced with each new ISS module. In 2004, Castro et al. (34) first character­
ized the microbiota of the early ISS habitat by 16S gene sequencing of samples isolated 
from potable water, air, and surfaces, thus establishing an important baseline against 
which future microbial characterization of this space habitat could be compared. These 
researchers found that the microbiome of the ISS closely resembled the microbiomes 
of both the Mir Space Station and the Space Shuttle (276, 357), as well as closed 

FIG 3 Fungal contamination of a noise mitigation panel in the ISS Zarya module where exercise and 

hygiene clothes were hung to dry. The arrow points to areas discolored by fungus. (Image from NASA, 

photo iss009E28777.)
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environments on Earth (358). Fifteen years later, this finding was reinforced in a new 
study which used a metagenomic approach to characterize the microbiome of the ISS 
(354). A study published in 2016, which described the monitoring of the JAXA “Kibo” 
module on the ISS, found that the microbiome of various surfaces in this module 
is composed primarily of human-associated bacteria, as well as some non-human 
associated bacteria, which were likely introduced during ISS resupply missions (359).

In-flight environmental monitoring on the ISS to mitigate risks to crew health 
relies upon culture-dependent methodologies to enable microbial enumeration, with 
subsequent identification after samples are returned to Earth, although in flight 
culture-independent approaches are being investigated (360–364). Microbial monitoring 
locations of interest such as the potable water life support system, ambient cabin air, 
and various surfaces in the habitat are sampled and cultured in flight to determine 
microbial load. Due to the low microbial numbers in potable water and cabin air, specific 
volumes of water and air are concentrated by filtration (water) and compaction (air) 
before being cultured. The specific methods and equipment for microbial sampling and 
processing that are currently used on the ISS have been described in Pierson et al. 
(365) and reviewed in Yamaguchi et al. (300). In general, spacecraft air and surfaces 
during a mission reflect the types of microorganisms found in a terrestrial home, such as 
the bacterial genera Staphylococcus and Bacillus and the fungal genera, Aspergillus and 
Penicillium (365). An overview of several commonly isolated microorganisms identified in 
various studies performed over the life of ISS is presented in Table S1. One key benefit of 
the culture-based approach currently used for environmental monitoring aboard the ISS 
is that it enables the development of an archival collection of culturable microflora that 
can be used for subsequent longitudinal investigations of microbial changes over time in 
the unique spaceflight environment (as previously discussed).

With planned human missions beyond LEO, there is an effort to develop and refine 
culture-independent approaches to monitor microorganisms, particularly those that can 
be done entirely on spacecraft. Technological advances include PCR thermocyclers and 
gene sequencers that have been used on the ISS (360, 361, 366). As an important proof 
of concept that microorganisms could be sequenced in spaceflight, two Gram-positive 
Staphylococcus isolates (S. capitus and S. hominus) were isolated on culture plates from 
ISS surface samples and identified via Nanopore sequencing in flight (366). This approach 
has subsequently been expanded to sequence other common ISS microbial isolates 
without prior culture on media plates (361). In addition to sequencing, other technologi­
cal approaches for microbiological monitoring have been investigated, including mass 
spectrometry, which has been used in robotic space exploration payloads [reviewed in 
reference (367)] and could be incorporated for human spaceflight to enhance molecular 
analyses of proteins, metabolites, or novel chemicals on extraterrestrial environments. 
Other considerations for microbiological monitoring in deep space include the need 
for stable consumables and software with appropriate databases to facilitate on site 
interpretation of monitoring data and associated risk assessment, which will also be 
crucial for establishing microbial monitoring resources beyond LEO.

Biofilm formation and control

Microbial biofilms associated with spacecraft, including life support systems, are a 
primary safety concern, as they can affect crew health and vehicle system function. 
Experiences with long-duration space missions in LEO (Skylab, Mir, and most recently ISS) 
along with microbial monitoring have led to the refinement of housekeeping protocols 
to control water condensation and other microbial-promoting conditions. However, 
biofilm control in spacecraft remains an ongoing challenge.

Experimental biofilm formation in microgravity was first described in studies 
involving Burkholderia cepacia (54) and P. aeruginosa (10). However, knowledge of 
biofouling problems in spacecraft was previously reported on Mir and other space 
habitats, including contamination of piping, within insulation materials, life support 
equipment and spacesuits, and a navigation window (351). The major issue with biofilms 
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is one of persistence as this mode of growth results in the development of tolerance 
to disinfectants and other adverse chemical conditions (368–370). Biofilms are normally 
polymicrobial communities, and the close proximity of microorganisms within biofilms 
can facilitate genetic exchange, metabolic interactions, and protection to some microbial 
community members [e.g., (369, 371)].

Important issues associated with biofilm contamination include those which occur in 
the ISS WRS (Fig. 4), which is an important component of spacecraft life support. Due 
to the expense of sending payloads to the ISS, onboard water is recycled through the 
WRS. Specifically, water collected from crew urine and humidity condensate is distilled 
to remove salts, treated with an oxidizer, filtered through a number of resins to remove 
organic compounds, and disinfected through the addition of iodine (372). This level of 
treatment is necessary as microorganisms present in urine and humidity concentrate 
represent a potential risk to both crew health and various WRS components. Even with 
this level of microbial control, biofilms have been encountered in WRS wastewater and 
have caused at least one major incidence of fouling that required the replacement of 
a major component (372). Aside from fouling, other potential biofilm-associated risks 
to the WRS and other spacecraft systems include microbial corrosion of materials, 
inactivation of onboard equipment, and potential risks to crew health by embedded 
pathogens. Microbiological monitoring of the wastewater tank in the WRS indicates 
the presence of a variety of bacterial genera, including Ralstonia, Burkholderia, Cupria­
vidus, and Sphingomonas (60, 297). Interestingly, five representative microorganisms 
(Burkholderia multivorans, C. metallidurans, R. insidiosa, P. aeruginosa, and Methylobacte­
rium fujisawaense) isolated from the WRS and the Russian water recycling system on 
ISS have been standardized as model bacterial communities in disinfection studies for 
future spaceflight missions (373), particularly those that will go beyond LEO. Aside from 
bacteria, fungi and archaea have also been described (288, 374).

Environmental engineering approaches for microbial control

Biofilm control is a global concern in many environments including those associated with 
medical, industrial, and marine importance, as well as in spaceflight. There are several 
added complications in spaceflight, notably the finite and limited resources of water and 
other consumables, as well as payload mass and cost considerations; thus, the efficacy of 
biofilm controlling approaches beyond LEO would need to involve materials that could 
be regenerated in spaceflight or on a lunar base [addressed in reference (297)]. Chemical 

FIG 4 (A) WRS on ISS and (B) potable water dispenser which is used as a source of potable water. The image shows a silver 

drink bag being filled by a crew member on the ISS with potable water. (Images from NASA, photos iss032e016316 and 

iss031e012293.)
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safety concerns also restrict the use of volatile and highly reactive disinfectants that may 
negatively impact the crew and equipment. The current disinfectant used for general 
microbial and biofilm control in potable water is iodine in the U.S. operating segment 
of the ISS, whereas the Russian water system uses colloidal silver (372). Current biofilm 
mitigation protocols on spacecraft have been reviewed (297).

As biofilm formation and control continue to be a challenging issue, there is active 
ongoing research in this field, including developing surfaces that resist colonization, 
alternative biofilm control chemicals, and improvements in biofilm detection [e.g., (375–
377)]. These approaches will be especially important for planned human exploration 
missions beyond LEO, where it will be necessary to revisit biofilm control strategies in the 
context of the limited resources available, and the possibility that life support systems 
in orbiting platforms may be inactive for periods of time when unoccupied. Some 
strategies being explored include the use of combining treatments with light-activated 
surfaces or nanoparticles to control biofilms (378) or the removal of some nutrients in the 
wastewater stream that may promote biofilm growth by ISS microorganisms (296, 379). 
While there are ground-based studies exploring these strategies, it will be important to 
test them in microgravity conditions during spaceflight and ultimately partial gravity 
conditions such as on the Moon or Mars.

THE FUTURE OF SPACEFLIGHT MICROBIOLOGY

As humans travel further from Earth and resupply efforts become impractical and/or 
impossible, the need for technology to maintain autonomous sustainability increases, 
including approaches to produce food, replenish water and oxygen, maintain astronaut 
health, and extend the useful life of spacecraft systems (380, 381). Accordingly, there 
is keen interest in bioregenerative life support systems in which organisms, including 
microbial and higher organisms (plants), would be involved in the breakdown of organic 
waste, while producing oxygen and potentially food for the crew (382, 383). One notable 
example is the NASA Controlled Ecological Life Support System program operated at 
the Kennedy Space Center for over 25 years (384–386). Another ongoing example 
is the Micro-Ecological Life Support System Alternative (MELiSSA), which has been in 
development since 1989 by the ESA (387). This bioregenerative system involves several 
compartmentalized bacterial processes and higher organisms. The current version 
involves several compartments that collectively produce edible products, regeneration 
of oxygen, and water recovery from wastes (383). A number of tests related to MELiSSA 
are underway in both ground-based (383) and a limited number of flight studies on the 
ISS (388). These and previous MELiSSA-related studies hold the potential to not only 
benefit life support systems for future exploration systems development but also expand 
our understanding of how environmental microorganisms respond to spaceflight and 
spaceflight analogs (71, 388–392).

It is important to note the host-pathogen interaction between microorganisms and 
plants during spaceflight is understudied, and some evidence has been reported that 
spaceflight may alter pathogenicity factors and the virulence of certain plant pathogens 
(52, 55, 393, 394). In addition, alterations in plant-microbe interactions during spaceflight 
could hold the potential to also benefit the host (380, 395). These considerations are 
important and a major part of future food systems, such as bioregenerative crop growth 
(363, 396, 397). This concept is important for spaceflight plant growth chambers, such 
as the Veggie spaceflight hardware, which was the first demonstration of actual open 
crop food production in the crewed spaceflight environment where humans and crop 
systems shared microbiome components, thus potentially propagating and spreading 
foodborne pathogens. In a study by Khodadad et al. of lettuce grown in the Veggie 
plant growth hardware on ISS, a comparison between the spaceflight and ground-based 
systems demonstrated changes in microbial concentrations and diversity, but none that 
would suggest a health risk (396). Bioregenerative food systems have microbiomes which 
are dependent on nutritient availability, and in the case of plants, a number of important 
microorganisms have been associated with the rhizosphere and other plant locations 

Review Microbiology and Molecular Biology Reviews

September 2024  Volume 88  Issue 3 10.1128/mmbr.00144-23 38

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

m
br

 o
n 

16
 D

ec
em

be
r 

20
24

 b
y 

14
7.

26
.2

51
.1

47
.

https://doi.org/10.1128/mmbr.00144-23


[e.g., (398)]. Certainly, one concern is the potential for microbial-based disease in the 
plants of a food production system. For example, an opportunistic fungal infection 
involving Fusarium oxysporium was reported on Zinnea hybrida plants grown on the ISS 
(399). From a historical perspective, the devastating Irish potato famine (400) caused by 
Phytophthora infestans provides a cautionary note about reliance on a single food item. 
Certainly, stability of any bioregenerative life support system including food production 
must factor in the potential for microbially induced disease.

Future functional studies will assess how spaceflight-associated changes in the 
astronaut microbiome manifest as physiological alterations in crew health. For exam­
ple, given the importance of the microbiome in the gut-brain axis (401), mechanistic 
examination of how changes occurring to astronauts’ microbiome and immune function 
could affect their physical and mental health may facilitate the development of strategies 
to maintain crew well-being. Similarly, insight into the functional changes occurring to 
the microbiome during spaceflight may help with the design of new supplements or 
nutritional strategies. The incorporation of probiotics as food supplements as counter­
measures to mitigate health risks is being evaluated to benefit astronaut health and 
performance (347, 402, 403). While the concept of using probiotics during spaceflight is 
not new (20, 333), a resurgence in interest into the benefits for humans in space (347, 
402, 403) has initiated new studies in this area (404, 405).

Even microbiological concepts that have traditionally been considered problematic 
could benefit spaceflight missions. For example, biofilms have been associated with 
a number of beneficial applications, including wastewater treatment (406) and metal 
extraction (407) and are, thus, being considered for use in spaceflight and space resource 
utilization. The advantage of incorporating biofilms in spaceflight processes is the ability 
of the component microorganisms to withstand a variety of chemical and physical 
stresses. Microbial processes that involve metabolic interactions among different species 
(i.e., syntrophic metabolism) are enhanced when organisms co-exist in close proximity 
within biofilms. For example, biofilms are being explored for extraction of oxygen (408) 
and rare metals such as vanadium (409) from simulated regolith. Accordingly, there is 
considerable interest in adapting these types of concepts to space travel.

In addition, investigations to further advance our mechanistic understanding of 
how microorganisms affect crew health and habitat sustainability are critical. For 
example, while the impact of spaceflight on microbial characteristics is well documen­
ted for short-duration culture, the impact of long-duration, multigenerational growth 
of microorganisms (in pure culture or mixed species consortia) in the chronic stress 
of microgravity has rarely been investigated—largely due to experimental limitations 
associated with spaceflight research (2). The implications of this gap in knowledge 
are tremendous, as the response to short-duration growth in microgravity has been 
repeatedly shown to alter gene expression, pathogenesis-related stress responses (e.g., 
biofilm formation and resistance to antibiotics), and virulence in unexpected ways (1, 5, 
6, 9, 14, 100, 122, 410, 411).

Thus, in order to effectively mitigate microbial risks to crew health and habitat 
sustainability, as well as ensure productive use of microorganisms for beneficial purposes 
in space, it is essential to understand the mechanisms underlying emergent and often 
non-intuitive microbial behaviors in response to the spaceflight environment. To achieve 
this goal, a holistic, integrated scientific approach which links omics data with functional 
phenotypic profiling must be used to understand the role that physical forces play in 
regulating microbial responses in the context of the multi-faceted stressors associated 
with the spaceflight environment during both short- and long-duration studies. This 
is critical for the development of more predictive modeling approaches, including 
those associated with AI and machine learning, that will successfully support human 
health and habitat sustainability in space and lead to translational biotechnology and 
biomedical advances on Earth.
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CONCLUSIONS

As humans have worked and lived for longer durations in spaceflight, we have advanced 
our understanding of how the microgravity environment impacts microbial risks for 
human health and habitat sustainability. Considering that microorganisms are inextrica­
bly connected with all aspects of human spaceflight, changes that occur to microbes 
could represent a formidable challenge to the successful transition of professional career 
astronauts and civilians for next generation missions to LEO and deep space. It, thus, 
follows that successfully expanding our presence and influence beyond the confines 
of Earth will require that we continue to increase our knowledge of microbial interac­
tions with humans, their environment, and other microorganisms both in space and 
on the surface of other celestial bodies. Findings from previous spaceflight research 
indicate that microbial adaptability to the novel environmental niche of spaceflight 
can result in unexpected alterations in a diverse range of microbial phenotypes and 
gene expression profiles that are critical for health and habitat sustainability both in 
space and on Earth (2). The mechanism(s) enabling unexpected microbial alterations to 
both spaceflight and spaceflight analog conditions are not fully understood. However, a 
solid body of evidence indicates that mechanotransductive responses to gravity-induced 
changes (e.g., altered fluid shear) in these environments mimic niches encountered by 
microbes during their natural terrestrial lifecycles and, thus, play important roles in the 
observed alterations (1, 87, 92). Accordingly, a thorough mechanistic understanding of 
these microbial adaptations is critical to successfully support future human spaceflight 
endeavors. Furthermore, the development of more integrated and realistic models that 
better mimic ecosystem complexity (e.g., polymicrobial consortia, radiation, celestial 
dust, altered gravity forces) will be necessary to understand microbial adaptations at 
the molecular and functional phenotypic levels to fully elucidate and manage microbial 
risks during human spaceflight. Within these realistic models is the overriding need 
to study physical forces in the context of the entire biological, chemical, and physical 
microenvironmental cues to fully translate this knowledge for practical applications.

To successfully achieve these goals, the next generation of spaceflight hardware will 
require closer interactions between scientists designing and performing the experiment 
and engineers building the spaceflight technology/hardware to create flexible, easy-to-
use formats for future studies with the same accuracy, reproducibility, and modularity 
associated with those in terrestrial laboratories (2). In addition, the progress of space­
flight experiments can often be hindered due to erratic flight schedules and funding, 
which can delay or cause loss of experimental opportunities. To engage new microbiol­
ogists in spaceflight research and advance the field, the spaceflight platform will need 
to be simple, affordable, and routinely accessible to enable reproducibility and iterative 
experimental advances.

It is important to note that the non-intuitive alterations in microbial responses are not 
restricted to negative outcomes. Indeed, the connection between spaceflight technology 
and Earth applications continues to expand with the need to solve mutual problems, 
such as the development of resource-efficient processes (e.g., in situ resource utiliza­
tion, synthetic biology) (412, 413), microbial supplements, vaccines, and therapeutics to 
benefit human health (e.g., probiotics, pharmaceuticals, nutrient supplements, gut-brain 
strategies to maintain health) (2, 347), and biologically based life support systems (387, 
390). Leveraging possible unexpected spaceflight microbial responses may help enable 
new technologies that can rapidly benefit future missions.

In conclusion, the spaceflight research platform provides a unique opportunity to see 
life in a new adaptational mode that has not been seen before and offers a wealth of 
knowledge and translational opportunities. The rapid expansion of both exploration and 
commercial spaceflight platforms strongly indicates that the renaissance of spaceflight 
microbiology will not end after the ISS is decommissioned but instead is only beginning.
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