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Abstract
Ensuring an adequate food supply and enough energy to sustainably support future global populations will require enhanced productivity 
from plants. Oilseeds can help address these needs; but the fatty acid composition of seed oils is not always optimal, and higher yields are 
required to meet growing demands. Quantitative approaches including metabolic flux analysis can provide insights on unexpected 
metabolism (i.e. when metabolism is different than in a textbook) and can be used to guide engineering efforts; however, as metabolism 
is context specific, it changes with tissue type, local environment, and development. This review describes recent insights from 
metabolic flux analysis in oilseeds and indicates engineering opportunities based on emerging topics and developing technologies that 
will aid quantitative understanding of metabolism and enable efforts to produce more oil. We also suggest that investigating the key 
regulators of fatty acid biosynthesis, such as transcription factors, and exploring metabolic signals like phytohormones in greater depth 
through flux analysis could open new pathways for advancing genetic engineering and breeding strategies to enhance oil crop production.
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Introduction
Oilseeds have diverse compositions that provide 
valuable products for society
Food security affects 800 million people around the world (Singh 
2024). Plant-based food, feed, and fuels will be increasingly impor-
tant to sustain life as the world population reaches 8.5 billion by 
2030 (The Sustainable Development Goals Report 2022). From an 
economic perspective, the value of seeds as a commodity is estab-
lished by protein, oil, and carbohydrate composition. Here, even 
small changes in composition can result in large financial gains 
for the agriculture industry. As an example, for the 87 million acres 
in US annual soybean production (Vaiknoras 2023), an oil increase 
by 1% at the expense of an unvalued carbohydrate with 50 bushel 
(bu)/acre, assuming 60 pounds (lbs)/bu, 20% oil by composition, and 
a 3-year price per pound of oil ranging from $0.40 to $0.90 (Market 
Insider 2024), a farmer would produce a crop with $12–27/acre 
more value on Midwestern US fields, which would translate to a cal-
culated $1 to $2 billion added revenue for the agriculture industry.

The primary constituent of vegetable oil is triacylglycerol (TAG) 
(Dyer et al. 2008; Baud and Lepiniec 2010; Allen et al. 2015; Sagun 
et al. 2023) with low levels of phospho- (Meng et al. 2014) and galac-
tolipids (Sahaka et al. 2020). TAG contains acyl chains comprised of 
carbon–carbon bonds that store the energy needed for nutrition or 
for use as renewable fuels, plastics, lubricants, paints, and coatings 
that are currently derived from petroleum feed stocks (Metzger and 
Bornscheuer 2006; Cahoon et al. 2007; Durrett et al. 2008; Wayne 
et al. 2019; Napier and Betancor 2023). Oilseed TAGs predominantly 
contain 5 fatty acids, including palmitic (16:0) stearic (18:0), oleic 
(18:1), linoleic (18:2), and alpha-linolenic (18:3) acid, as summarized 
in Table 1 (Dyer et al. 2008; Sharafi et al. 2015; Jain 2020).

Considerable diversity exists in biomass composition across dif-
ferent tissues and species. Lipid content ranges from less than 1% 

in peas and lentils to over 70% in walnuts and pecans and even up 
to 88% in palm mesocarp, while it remains below 5% in leaves 
(Lin and Oliver 2008; Allen et al. 2015). The diversity in TAG concen-
tration suggests a significant opportunity to tailor plants with bio-
technology or breeding efforts to meet increasing oil needs. In this 
update, we explore how vegetatively supplied nutrients and their 
conversion through biochemical pathway flux impacts seed storage 
reserve accumulation. We highlight the successful use of isotopic la-
beling combined with metabolic flux analysis (MFA) in uncovering 
nontraditional pathways for carbon and nitrogen utilization in oil 
seeds, as well as alternative carbon assimilation sites in plants. 
Additionally, we briefly discuss the recent engineering advances 
and potential future directions, including role of transcription fac-
tors (TFs), the manipulation of phytohormones, and technologies 
that together offer promising opportunities for engineering and 
breeding initiatives to improve oil content and composition.

Seed metabolism and oil accumulation

Storage reserve production is limited by available 
sugars and amino acids over development
Maternal substrates available to developing seeds are finite (Pipolo 
et al. 2004; Hernández-Sebastià et al. 2005; Kambhampati et al. 
2021). Consequently, the final composition of the seed is constrained 
by the resources it receives throughout development and the meta-
bolic flux through pathways that transform these resources to seed 
reserves (Allen and Young 2013). As oilseeds contain a significant 
amount of stored protein, in addition to carbon they require ample 
nitrogen supplied from vegetative parts of the plant as amino acids 
(Rainbird et al. 1984; Fabre and Planchon 2000; Pipolo et al. 2004; 
Hernández-Sebastià et al. 2005; Allen et al. 2009; Truong et al. 
2013; Koley et al. 2022). Photosynthetic carbon movement from 
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source to sink tissues occurs predominantly via phloem (Thorne 
1985) with sucrose (Weber et al. 1997a; Pegler et al. 2023) and a com-
bination of several amino acids (Tegeder 2014; Besnard et al. 2018; 
Tegeder and Hammes 2018). Sugar transporters and their transport 
process have received considerable attention (Pegler et al. 2023), in-
cluding sucrose transporters (SUT/SUC) (Weber et al. 1997b; Aldape 

et al. 2003; Baud et al. 2005), hexose symporters (STPs) (Weber et al. 
1997b; Büttner 2010; Poschet et al. 2010; Pommerrenig et al. 2013; 
Rottmann et al. 2018), sucrose facilitators (SUFs) (Zhou et al. 2007), 
and “sugars will eventually be exported transporters” (SWEETs) 
(Chen et al. 2015; Yang et al. 2018; Fei et al. 2021). The movement 
and utilization of carbon as sugars and amino acids varies over the 
course of development and can dramatically impact final seed com-
position (Kambhampati et al. 2021). This remains an intriguing area 
to enhance yield or alter protein and oil. When the supply of carbon 
and nitrogen to soybeans was altered, protein content was dramat-
ically impacted, changing from 14% to 47% of seed biomass, and was 
considered through modeled fluxes (Allen and Young 2013). 
Measurements of biomass in controlled field studies (Rotundo 
et al. 2011; Locke and Ramirez 2021) and other flux studies in seeds 
(Truong et al. 2013) have confirmed the change in seed protein as a 
consequence of maternal supply. The highest levels of sugars and 
amino acids available to developing seeds are present at early seed- 
filling stages and decreases during later stages (Kambhampati et al. 
2021). Thus, efforts aimed at altering final seed composition, and po-
tentially breaking negative associations between valued reserves 
like oil and protein, reported in soybean (Wilcox and Shibles 2001), 
rapeseed (Grami et al. 1977), sunflower (Li et al. 2017), and flax 
(Tavarini et al. 2016) may benefit from knowledge of the available 
concentrations over development (Kambhampati et al. 2021; 
Aznar-Moreno et al. 2022) (Fig. 1) as addressed below.

Late seed metabolism reduces commercial value and 
is a target for engineering
Maturation comprises 10% to 50% of the total time a seed develops 
(reviewed in Leprince et al. 2017). The temporal shifts in biomass 
composition of multiple oilseeds including Arabidopsis, rapeseed, 
and soybean indicate that lipid reserves are partially degraded dur-
ing the maturation processes (Chia et al. 2005; Baud et al. 2008; 
Baud and Lepiniec 2009; Kambhampati et al. 2021). Lipid break-
down is likely prompted by the restricted nutrient supply in the lat-
er stages of development (Kambhampati et al. 2021) and is 
necessary to sustain ongoing metabolic demands, as indicated by 
levels of transcripts, enzymes, and metabolites (Baud and 
Graham 2006; Fait et al. 2006; Angelovici et al. 2010; Jones et al. 
2010; Collakova et al. 2013; Galili et al. 2014; Kambhampati et al. 
2020, 2021). As development proceeds, some oilseeds such as soy-
beans produce significant levels of raffinose family oligosacchar-
ides (RFOs) (Hagely et al. 2013) and cell wall polysaccharides 
(Litterer et al. 2006). The RFOs are predicted to contribute to desic-
cation tolerance (Black et al. 1996; Obendorf 1997; Bailly et al. 2001), 
although results from soybean lines lacking raffinose synthase 

Table 1. Global production of major oil seed crops in 2023/2024 along with oil content on a dry weight percent basis (% DW) and fatty acid 
composition as a percentage of the total (%).a

Oil seed Production 
(106 metric tons)

Oil 
(% DW)

Fatty acid composition (% of total)

Typical Other

C16:0 C18:0 C18:1 C18:2 C18:3 C12:0 C14:0 C20:0 C22:0 C24:0
Soybean 398.21 20 10.6 4 23.3 53.7 7.6 0.1 0.3 0.3
Rapeseed 87.44 40–45 3.6 1.5 61.6 21.7 9.6 0.1 0.6 0.3 0.2
Sunflower 55.08 35–42 7 4.5 18.7 67.5 0.8 0.1 0.4 0.7 0.2–0.3
Peanut 50.46 47–50 11.1 2.4 46.7 32 0 2.9 1.5
Cottonseed 41.46 25–35 21.6 2.6 18.6 54.4 0.7 0.3 0.3
Palm kernel 20.71 50 8.5 2.4 15.4 2.5 47.8 16.3 0.2
Copra 6.05 65–70 8.9 2.7 6.4 1.6 47.8 18.1 Tr

aData presented here are gathered from (Ulmasov et al. 2012; Dijkstra 2016; List 2016; Premnath et al. 2016; Kerr and Dunford 2018; Petrie et al. 2020; Aznar-Moreno 
et al. 2022; Li et al. 2022b).

Figure 1. Storage reserve production depends on resource availability 
(example: soybean). Early seed development has access to a high level of 
maternal resources, including sucrose and amino acids. The incoming 
sucrose is metabolized to sugar phosphate (Sugar-P), or hexose 
phosphates more precisely, to make lipid, protein, starch, and other 
carbohydrates. Amino acids contribute to protein. Mid-seed 
development includes seed filling using vegetatively supplied 
resources, and carbon from starch turnover to produce Sugar-P for lipid, 
protein, and carbohydrates including oligosaccharides and cell wall 
polysaccharides. Few maternal resources are available at late seed 
development. Some existing reserves like lipid and protein are partially 
turned over to contribute carbon for carbohydrate biosynthesis. 
“Source” indicates photosynthesizing leaves and vegetative tissues. The 
green to yellow color gradient indicates the transition from young to 
senescence stages in the plant life cycle. 
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show no obvious phenotypic defects during maturation or germi-

nation (Dierking and Bilyeu 2008, 2009). Reducing the production 

of carbohydrates, such as RFOs, that have less commercial 

value in oilseeds could enhance oil content without negatively 

impacting protein levels, and this may be achievable by preventing 

lipid or other storage reserve breakdown during seed development 

(Aznar-Moreno et al. 2022). Related efforts have focused on a 

TAG lipase, Sugar Dependent Protein 1 (SDP1) (Kelly et al. 2013; 

Kim et al. 2014; Kanai et al. 2019; Azeez et al. 2022; Aznar-Moreno 

et al. 2022), though effort with other lipases including glycine- 

aspartate-serine-leucine (GDSL)-type esterases (Huang et al. 2015; 

Ding et al. 2023), Plastid Lipase1 (PLIP1) (Wang et al. 2017), and 

Monoacylglycerol lipase (MAGL) (Zhan et al. 2023) have been re-

ported. Roles of other putative oil body-associated lipases 

(Eastmond 2004) in carbon partitioning between oil and carbohy-

drates remain to be explored. Seed-specific reductions in SDP1 

through RNAi do not adversely affect seed maturation or germina-

tion (Kelly et al. 2013; Kim et al. 2014; Azeez et al. 2022; 

Aznar-Moreno et al. 2022) and can maintain protein levels similar 

to wild type (Aznar-Moreno et al. 2022), suggesting that the negative 

association between protein and oil may be more pliable than is cur-

rently thought.
To the extent that protein, carbohydrate, and lipid are concom-

itantly produced through metabolism, all require carbon derived 

from sugars and amino acids (Fig. 2A); however, the immediate 

precursors differ for each reserve. The distribution of precursors 

for protein (i.e. 20 amino acids) minimally requires six nodes in me-

tabolism, whereas fatty acids are singly derived from acetyl-CoA 

building blocks and nucleotide sugar phosphates, used to synthe-

size carbohydrate polymers, are sourced from hexose phosphate 

in the chloroplast or cytosol (Allen et al. 2009; Lonien and 

Schwender 2009) (Fig. 2B). Though protein production can be lim-

ited by nitrogen, pyruvate is the substrate for five amino acids 

and acetyl-CoA for fatty acids (Fig. 2B). Understanding the regula-

tion at the pyruvate node and methods to direct carbon to pyruvate 

may pose a strategy to enhance combined oil and protein levels, if 

other amino acid families are not significantly compromised 

(Morley et al. 2023).

What have we learned from flux analysis in 
oilseed plants?

Plant seed-filling metabolism is distinct from animals 
and microbes
To understand how vegetatively supplied assimilates are used in 
developing seeds, flux analysis has focused on quantifying 
metabolic pathway use in seed filling during early and mid- 
development when oil and protein are synthesized. The consis-
tent production of reserves through the early and mid-stages of 
development (Egli 2017) indicates steady-state metabolism and 
thus unchanging fluxes during the seed-filling period. MFA has 
quantitatively described atypical or unconventional metabolic 
pathway flows. These are distinct from textbook descriptions 
of central metabolism that are not specific to seed metabolism. 
For example, the production of fatty acids requires many 
acetyl-CoA building blocks that are derived from a combination 
of glycolytic flux and the pentose phosphate pathway with or 
without an oxidative component (i.e. OPPP). Though OPPP is 
thought necessary to produce the significant reductant needed 
for fatty acid synthesis (FAS), a number of green oilseeds utilize 
glycolysis and light without a complete requirement for NADPH 
production from the OPPP (Allen and Young 2013; Schwender 
et al. 2015). This minimizes oxidative steps that release carbon 
dioxide (CO2) to conserve available carbon. Importantly, the 
conversion of hexose phosphate to two acetyl-CoAs results in 
the concomitant production of 2 NAD(P)H and 1 ATP per acetyl 
group. This is stoichiometrically equivalent to the requirement 
for FAS. Thus, there is no absolute requirement for OPPP in the 
production of fatty acids in any living system, plant oilseed or oth-
erwise (Fig. 2C), presuming glycolysis is present.

Further, the use of Rubisco to reassimilate CO2 released during 
oil production in green oilseeds is well documented, initially 
in Brassica napus (Schwender et al. 2004; Junker et al. 2007; 
Schwender et al. 2015) and more recently in pennycress 
(Tsogtbaatar et al. 2020) and Physaria (Cocuron and Alonso 2024) 
and to a more limited extent in Camelina (Carey et al. 2020; Koley 
et al. 2022) and soybean (Allen et al. 2009) (Fig. 3A). Processes that 
conserve carbon, limiting the release of CO2 or that recover CO2, 
have improved conversion of carbon received by the seed into 

Figure 2. Key central carbon metabolic pathways that make seed storage reserves. A) Maternal resources like sucrose (the major carbohydrate source) 
and hexose and amino acids like alanine (ALA), asparagine (ASN), and glutamine (GLN) enter central metabolic pathways. Glycolysis, OPPP, reductive 
pentose phosphate pathway (RPPP), TCA, and anaplerosis reactions participate in producing oil, protein, and carbohydrates including starch, raffinose 
family oligosaccharides (RFOs), and cell wall polysaccharides (Cell Wall). Incoming maternal resources are colored yellow, glycolysis is green, PPP is red, 
TCA is purple, and anaplerosis is blue. Abbreviations: 2-OG, 2-oxoglutarate; ASP, aspartate; CIT, citrate; F6P, fructose-6-phosphate; G6P, glucose-6- 
phosphate; GLU, glutamate; ICIT, isocitrate; MAL, malate; OAA, oxaloacetate; PEP, phosphoenolpyruvate; PGA, phosphoglycerate; PYR, pyruvate; 
SUCC, succinate; TP, triose phosphate. B) At least six nodes in central metabolism contribute to protein precursors. Fatty acids for lipid biosynthesis, 
and carbohydrates are derived from a single precursor node in the network. C) Glycolysis is sufficient to produce ATP and reducing equivalents required 
for FAS. Conversion of glucose/hexose to two molecules of ACoA produces 2 NAD(P)H and 1 ATP per acetyl group, stoichiometrically equivalent to the 
requirement of fatty acid production. ACoA, acetyl-CoA.
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biomass, which is coined carbon conversion efficiency (CCE). 
Reported values for CCE have been recently reviewed (Sagun et al. 
2023); importantly, the CCE is a consequence of storage reserve 
composition. Because the production of lipid requires precursors 
that are made using CO2-releasing steps such as pyruvate dehydro-
genase, seeds that have high oil content will consequentially have a 
lower CCE if mechanisms are not in place to recover the respired 
CO2. With changes in the accumulation of biomass components 
during seed development, estimates of the CCE will vary temporally 
and may limit its usefulness if not considered specific to seed filling 
regimes (Kambhampati et al. 2021).

Seeds rely less on TCA-derived carbon skeletons for 
amino acid biosynthesis
Unlike Escherichia coli or other systems that receive inorganic nitro-
gen, seeds receive organic nitrogen primarily in the form of the ami-
no acids glutamine, asparagine, and alanine. This has important 
consequences on the flux through the tricarboxylic acid (TCA) cycle 
and the resulting products. When 13C-glutamine is provided to oil-
seeds as a metabolic tracer, the labeling in resulting products was 
unanticipated and emphasized the differences in pathway use 
that are unconventional (summarized in Allen 2016a). For plants 
that produce very long chain fatty acids, reversible functioning 
isocitrate dehydrogenase can assimilate a limited amount of CO2 

and subvert the TCA-based decarboxylation events to produce 
citrate. Citrate is exported from the mitochondria and through 
ATP-citrate lyase results in a source of acetyl-CoA for fatty acid 
elongation in rapeseed (Schwender et al. 2006), Physaria (Cocuron 
and Alonso 2024), and pennycress (Tsogtbaatar et al. 2020) (Fig. 3B).

In soybeans (Allen et al. 2009; Allen and Young 2013), the high 
level of protein produced capitalizes on the available glutamine ni-
trogen donated to other carbon skeletons to make the balance of 20 
amino acids needed for protein production (Rainbird et al. 1984; 
Allen et al. 2015). Through this process, glutamine is twice deami-
dated, resulting in 2-oxoglutarate that is converted into other me-
tabolites. Flux maps guided by 13C-labeled glutamine in soybean 
embryos revealed that 2-oxoglutarate is used to make malate. 
Then malic enzyme and pyruvate dehydrogenase are used in tan-
dem to generate reductant and carbon that support FAS (Allen 
et al. 2009; Allen and Young 2013) (Fig. 3C). The value of malic en-
zyme for oil production has also been suggested in maize lines 
that naturally produce more lipid (Cocuron et al. 2019). Through a 
recent engineering approach, MFA results from soybean were vali-
dated (Morley et al. 2023; Schwender 2023). The study elucidated 
the contribution of subcellular malic enzyme activity to biomass 

composition. Transgenic alleles of malic enzyme were targeted to 
either the chloroplast or the extraplastidial compartments, result-
ing in changes in oil and free amino acid concentrations. In both 
cases, there was an increase in pyruvate-derived amino acids and 
a depletion of aspartate family amino acids. Malate was more heav-
ily used by malic enzyme to make pyruvate relative to malate dehy-
drogenase–based production of oxaloacetate, the precursor for 
aspartate family amino acids. Increased pyruvate levels in trans-
genics suggested that further increase in oil will require enhancing 
steps that convert pyruvate to lipids and may indicate a rate- 
limiting role of acetyl-CoA carboxylase, the first committed step 
to lipid production (Salie and Thelen 2016; Ye et al. 2020). The sub-
cellular location of malic enzyme activity also affected the degree of 
fatty acid polyunsaturation. This suggests that the co-production of 
reductant needed for desaturation events was impacted and may 
imply that malate valves (Selinski and Scheibe 2019; Dao et al. 
2022; Morley et al. 2023) that rebalance reductant between subcel-
lular locations were partially disrupted.

Genetic engineering efforts to enhance oil content

Pushing carbon is a key to lipid production in seeds 
and leaves
The enhanced expression of malic enzyme results in more oil in 
seeds and is consistent with a push of carbon into pyruvate and 
fatty acid metabolism. As a strategy, pushing carbon has also 
been considered in engineered leaves (Vanhercke et al. 2017) 
and stems (Parajuli et al. 2020) to increase lipid levels. Many TFs 
are integral to this “push” strategy (Yang et al. 2022a; Sagun 
et al. 2023), including the master regulator WRINKLED 1 (WRI1) 
(Cernac and Benning 2004; Baud and Lepiniec 2010; Bates et al. 
2013; Ma et al. 2013; van Erp et al. 2014; Kong et al. 2020). WRI1 
has been extensively studied through endogenous and heterolo-
gous expression of homologs resulting in enhanced seed oil quan-
tity and quality in Lepidium campestre (Ivarson et al. 2017), Glycine 
max (Chen et al. 2018), Linum usitiassimum (Li et al. 2022a), and 
Arabidopsis thaliana (Lim et al. 2022). Additionally, other transcrip-
tional regulators have shown promise in enhancing seed oil yield 
either independently or by regulating WRI1 and present opportu-
nities for further analysis. Some of the most tantalizing candi-
dates are discussed in the review by Sagun et al. (2023).

Interestingly, when high-oil tobacco leaves (Vanhercke et al. 2017) 
were evaluated with isotopically nonstationary MFA (INST-MFA), 
they showed increased flux catalyzed by malic enzyme (Chu et al. 
2022) as a consequence of engineering other steps. However, the 

Figure 3. Nonconventional pathways in central metabolism provide carbon for fatty acids. A) Rubisco shunt fixes CO2 released during FAS in some 
green oilseeds. B) Reversible function of isocitrate dehydrogenase directs glutamine carbon toward the generation of citrate. Citrate is then metabolized 
to produce oxaloacetate and ACoA for fatty acid elongation (C20/C22). C) Glutamine contributes nitrogen for protein amino acid biosynthesis, resulting 
in co-production of organic acids that are partially processed by malic enzymes to pyruvate and ACoA for FAS.
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same was not true in fluxes through Arabidopsis seeds (Lonien and 
Schwender 2009). This indicates that the role of TFs is both tissue 
and species specific. For the most part, direct downstream target 
genes of many of these TFs that impact oil synthesis remain to be 
fully identified. Given its role as a “master regulator” that controls 
the expression of many genes important for the conversion of sugars 
into fatty acids, more attention has been paid to WRI1. For example, 
in vitro DNA binding studies in soybean (Chen et al. 2018) and 
genome-wide studies with a phylogenetic footprinting approach in 
Brassicaceae family (Kuczynski et al. 2022) and soybean WRI1 bind-
ing sites (Jo et al. 2024) indicated interaction with the AW-box and 
CNC-box cis acting element. Such interactions regulate the expres-
sion of genes involved in fatty acid production, elongation, desatura-
tion, and exit from plastid along with predicted targets in glycolysis 
and the PPP. While many studies of the impact of TFs could be ex-
plored with MFA, to date reports are limited to those involving 
WRI1 (Lonien and Schwender 2009; Chu et al. 2022). Other concepts, 
originating from efforts to coexpress diacylglycerol acyltransferase 
DGAT (Behera et al. 2023), oleosin protein (Fan et al. 2013; 
Winichayakul et al. 2013), or other lipid-packaging systems (James 
et al. 2010) and regulation by SEIPINS (Cai et al. 2015) as part of 
“pull” or “packaging” approaches, have also strongly impacted oil 
production and are promising strategies netting significant gains in 
seeds and leaves (van Erp et al. 2014; Vanhercke et al. 2014, 2019) 
but are beyond the scope of this review.

Maternal sucrose supply governs oil seed carbon push
The push of carbon into oilseeds originates from supplies of sucrose 
and photosynthetic carbon assimilation in leaves has received atten-
tion in recent years. Leaves of oilseeds including Arabidopsis (Ma 
et al. 2014), tobacco (Chu et al. 2022; Fu et al. 2023), and camelina 
(Xu et al. 2021) have been mapped with INST-MFA to analyze photo-
synthesis that can limit crop productivity (Koley et al. 2024). These 
studies collectively identified changes in photorespiration that oc-
curred with high light acclimation (Ma et al. 2014), the export of ami-
no acids from photorespiration (Fu et al. 2023), and the unexpected 
oxidative metabolism of carbon (i.e. OPP metabolism) that occurs 
concomitantly with carbon assimilation in photosynthesis (Xu 
et al. 2021, 2022). However, there are no MFA models directly tying 
flux from leaves to developing seeds across multiple organs and tis-
sues, and until recently (Koley et al. 2022) no multiorgan flux maps 
existed for any living system.

Silique tissues are photosynthetic and contribute 
synergistically to seed biomass
Though leaves are a primary source of carbon assimilation, studies 
in many plants indicate that pod walls and siliques can make a 
significant contribution to seed biomass (Atkins et al. 1977; 
Imaizumi et al. 1997; Furbank et al. 2004; Pengelly et al. 2011; 
AuBuchon-Elder et al. 2020; Koley et al. 2022). Oilseeds such as 
camelina grow with siliques high above the canopy, resulting in 
unencumbered access to light. In addition, siliques are produced 
temporally, immediately before the seeds. At the time of seed-set, 
many leaves have withered and fallen away. These observations 
suggested that silique photosynthesis may contribute to the devel-
oping cotyledons in camelina (Koley et al. 2022). MFA showed that 
a significant percentage of carbon in the seeds (33% to 45%) was de-
rived from silique-based photosynthetic assimilation of CO2 with the 
remainder coming from leaves. The siliques provide a “just-in-time” 
delivery of photoassimilates to the seeds contained within the pod. 
Unlike leaves, siliques do not transfer carbon to other plant parts 
(Koley et al. 2022) and may enhance the viable seed number. 

Further, the proximity of the silique may imply reduced pressure dif-
ferentials between the source and sink, potentially lowering the 
transport cost relative to a long-distance translocation of sugars. 
This study represents a first multiorgan metabolic flux map for 
any biological system, plant or otherwise. Relatedly, a recent study 
with field grown soybean indicated that pod and seed photosynthe-
sis contribute about 9% of daily canopy carbon gain with a 13% to 
14% contribution to seed weight (Cho et al. 2023), building on the 
“green” seed potential of soybean assessed by MFA (Allen et al. 
2009) and emphasizing that our understanding of what contributes 
to seed yield is incomplete and would benefit from additional MFA 
studies that include more organs and tissues.

Advances in technology and methods will unlock 
new possibilities

Stable isotopes with modern technologies and 
software can complement traditional radiolabeling 
evaluations of flux
Though considerable progress has been made to quantify central 
metabolism by computational MFA in oilseeds, much of what we 
know about FAS and lipid assembly, exchange, and breakdown 
have relied on radiolabeling studies to deduce flux information 
(e.g. Pollard et al. 2015; reviewed in Allen et al. 2015). Seminal findings 
documented the acyl exchange that explains high polyunsaturation 
in TAG (Bates et al. 2009) and have suggested that the rapid labeling 
in phosphatidylcholine may indicate the involvement of this lipid in 
shuttling acyl chains to the endoplasmic reticulum (Tjellström et al. 
2012; Allen 2016a; Karki et al. 2019). These studies are complementa-
ry to stable isotope investigations. Recent efforts with stable isotopes 
(Kambhampati et al. 2024) indicate the added value that isotopo-
logue quantification using mass spectrometry (MS) can contribute 
to addressing important questions in lipid biology. MS measure-
ments to quantify lipids, that is, lipidomics (Welti et al. 2007; 
Romsdahl et al. 2022) and imaging-MS (Romsdahl et al. 2021; Horn 
and Chapman 2024) or nuclear magnetic resonance (Borisjuk et al. 
2023), define differences in lipids or other components that provide 
an indication of the metabolic phenotype. In some cases, this in-
cludes spatial resolution that could complement multiorgan investi-
gations or identify phenotypic variation at the cellular level within 
seeds. Isotopes can assess the actively produced lipids in different 
tissues with this purpose in mind (Romsdahl et al. 2021). The use 
of stable isotopes and modern technologies such as the application 
of high-resolution MS (HRMS) (Allen 2016a; Allen and Young 2020) 
remain a largely untapped strategy to quantitatively describe lipid 
metabolism and will continue to advance the field with improve-
ments in instrument resolution and new data analysis platforms 
(Kambhampati et al. 2024). Similarly, absolute quantification techni-
ques, including aqua-multiple reaction monitoring (Ahsan et al. 
2018) and methods to measure intermediates in FAS including 
acyl-acyl carrier proteins, (i.e. acyl-ACPs) (Nam et al. 2020; Jenkins 
et al. 2021) and their labeling (Chu et al. 2022), provide examples of 
technological advances that will contribute to quantitatively explain 
lipid production and breakdown dynamics.

Acyl-ACP quantification indicates fatty acid 
metabolism is incompletely described
ACPs act as intermediates in FAS. Like other intermediates, the 
levels of ACPs are not strictly tied to flux through FAS; however, 
several reports to date suggest that tissues producing more oil 
generally have a higher level of measured ACPs (Chu et al. 2022) 
and greater enzymatic activities (Ohlrogge and Kuo 1984). When 
the tissue is not producing a significant amount of lipid, then 
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the levels of the individual acyl-ACPs can be lower and more chal-
lenging to quantify (Xu et al. 2023). During development acyl-ACPs 
decline when oil and protein are being made (Morley et al. 2023). 
Measurements of acyl-ACPs as a readout to understand oil pro-
duction have been considered in several oilseeds (Bates et al. 
2014; Kim et al. 2015) and algae (Msanne et al. 2021). The unanti-
cipated presence of polyunsaturated acyl-ACPs indicates our 
understanding of FAS is incomplete (Nam et al. 2020). 
Polyunsaturated acyl-ACPs could reflect the breakdown 
of chloroplast lipids in seeds, as they transition from green 
photosynthetically capable organs to non-green storage compart-
ments taking advantage of acyl-ACP synthetases (Koo et al. 2005). 
The breakdown of lipids, through recycling with development 
(Kambhampati et al. 2021) that may include beta oxidation of fatty 
acids (Koley, Allen, unpublished data) or for lipid remodeling 
as recently depicted (Parchuri et al. 2024), remains a largely 
unexplored area in metabolism that could be deduced from the 
combination of isotopic labeling and quantitative techniques 
such as MFA.

Mechanistic evaluation of hormones holds potential 
for oil yield and improving fatty acid content
One of the other areas that could benefit from the application of 
quantitative approaches is the exploration of phytohormones. 
Studies underlying the ability of phytohormones to alter fatty acid 
composition and oil biosynthesis are either restricted to exogenous 
application of these hormones like indole-3-acetic acid, cytokinin 
6-benzylaminopurine (Talukdar et al. 2022), abscisic acid (Jadhav 
et al. 2008), or altered gene expression of hormone precursors 
(Kant et al. 2015). Limited reports are available indicating the regula-
tion of fatty acid and seed oil content by phytohormones via signal-
ing cascades (Thien Nguyen et al. 2016) impacting TFs associated 
with the “push” pathway and GDSL-type Seed Fatty Acid Reducer 
gene (Chen et al. 2012). However, in most cases these mechanisms 
remain incompletely quantified if not uncharacterized.

In combination, the coordinated regulation of FAS by develop-
mental regulators such as phytohormones is an open area with 
chemical factors affecting metabolite and transcripts during 
seed development. Since hormones like abscisic acid play a critical 
role in stress responses, integrating developmental and environ-
mental factors with changes in metabolic flux will potentially 
result in discoveries that enhance plant resilience in future cli-
mates and could additionally contribute to higher oil–yielding 
species.

Conclusion
The network of central metabolism that supports production of pro-
tein, oil, and carbohydrates is flexible and operates with different 
throughputs for seeds than other tissues or systems (Allen 2016b), 
in part because of the maternal provisions that seeds receive from 
vegetative tissue, but also because of the evolved role as a storage or-
gan. Our understanding of how seed metabolism operates continues 
to be shaped by recent studies and assumptions originating from the 
animal or microbial kingdoms may not be applicable. To advance the 
production of seeds with improved compositions, future studies 
must consider temporal aspects during seed development when 
the composition is changing, the balance of carbon allocated to dif-
ferent reserves and their subcomponents, and the synergies be-
tween tissues of the plant and how they are impacted by changes 
in the environment. Such consideration can explain what metabolic 
or developmental functions the turnover of lipids over seed growth 

and maturation fulfills and if they are required for viability 
(Outstanding Questions). The production and degradation of lipids 
that may appear futile could in fact be a necessary rapid sensitive re-
sponse to changes in the environment that has been conserved 
throughout time. New technologies that more precisely and quanti-
tatively evaluate aspects of metabolism are emerging. These are cru-
cial to provide types of comprehensive descriptions that are 
common for gene expression and protein. Though most modern-day 
labeling techniques involve labeled carbon (14C or 13C), an abun-
dance of stable isotope choices including labeled hydrogen (2H), 
oxygen (17O,18O), nitrogen (15N), and sulfur (33S, 36S) are now 
commercially available and can be rigorously quantified with 
MS-based technologies including HRMS and can be adapted for 
INST-MFA (Allen 2016a; Allen and Young 2020). This would help 
to elucidate fluxes that otherwise might be challenging to 
estimate (Kambhampati et al. 2024) and enable the rational develop-
ment of pathways for carbon redistribution in agriculturally 
beneficial ways to enhance value-added traits in oil seed crops 
(Azeez et al. 2022; Aznar-Moreno et al. 2022; Morley et al. 2023; 
Sagun et al. 2023).

Advances

• Descriptions of seed metabolism focus on accumulation 
of storage reserves overlooking reserve breakdown, in-
cluding the degradation of oil, that reduces final seed 
value and presents an opportunity for engineering.

• The TCA in plant seeds operates differently than in other 
tissues or living systems, resulting in distinct roles for 
isocitrate dehydrogenase and malic enzyme in oil pro-
duction based on MFA. Malic enzyme contribution was 
recently validated through a genetic engineering 
approach.

• Flux analyses in leaves and photosynthetically active re-
productive structures (i.e. siliques and pods) using 
INST-MFA emphasize that the sources of carbon for de-
veloping seeds are incompletely understood.

• Stable isotopic labeling from multiple elements coupled 
with HRMS and new software tools provide an opportu-
nity for more comprehensive MFA.

Outstanding questions

• Does carbon resulting from lipid breakdown late in seed 
development contribute to biosynthesis of other seed 
storage reserves, prepare the seed for dormancy and fu-
ture germination, or what roles does it serve?

• Can the negative association between protein and oil be 
decoupled through engineering efforts focused on tem-
poral differences in seed metabolism and limiting carbo-
hydrate production?

• What contribution can reproductive structures make to 
the seed carbon economy? How much of the carbon that 
is released as CO2 to make precursors for fatty acid bio-
synthesis in embryos and cotyledons is recovered within 
the reproductive organs under different environments 
and in different species?

• How can TFs and phytohormone targets be better lever-
aged across development to positively influence seed 
composition?
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