COMMUNITY SCIENTIST EXPERIENCES RESEARCH

Jenna Walker and Madison Mitchell

February 6, 2025

THE MEADOWS CENTER FOR WATER AND THE ENVIRONMENT TEXAS STATE UNIVERSITY

TEXAS STREAM TEAM

Funding for the Texas Stream Team is provided in part by the United States Environmental Agency through the Texas Commission on Environmental Quality

BACKGROUND

 Qualitative Study – Exploring the Experiences of Texas Stream Team Community Scientists.

 To understand the motivations, experiences, and outcomes of being a water quality monitor in the Texas Stream Team program.

^{S₅} I felt braver to get my feet wet. How deep can I go? What do I find when I am down there?... [the experience] has increased my opportunity to do things I have wanted to do because it has made me braver to go do it. Even if I am by myself. ^{S₅}

Texas Stream Team Community Scientist

RESEARCH METHODS

Data Collection – Surveys, Interviews

Data Analysis – Coding, Themes

Trans

Key Topic	Program: Needs and Previous Findings	Broader Literature Connection
Pollution Event	The program was initially created by <u>the TCEQ</u> to fill in data gaps around the state for professional monitoring and to better identify pollution events Internal knowledge of occurrences, need empirical data regarding frequency and process	Citizen science can play a role in water-related pollution monitoring (Hyder et al. 2017: <u>Modox</u> et al. 2020)
Data Use	 We know using data for science and sharing data are important to program participants (Lopez 2021) Data are publicly available for download, and need empirical evidence of <u>Ditox</u> they are <u>data</u> used for community advocacy and/or science2 Da and if participants understand the value and impact of the data? 	Data sharing builds community and promotes volunteer satisfaction/retention (Lopez 2021: Davis et al. 2020: Alender 2016: Roggenbuck at al. 2001)
Career Impacts	 We know that career-oriented is a motivation factor for program participation (Lopez 2021) We do not yet know how participation in the program influences educational and career paths 	"Career" is one of six in the Volunteer Functions Inventory (Clary et al. 1998). Career is a motivator for participation in other water quality monitoring participatory research programs (Alender 2016).
Monitaring (Experience)	 No formal study or mechanism for sharing experiences other than the open comment section on the water quality monitoring form To gauge the experiences/challenges of volunteers Do their experiences keep them involved? Are they building relationships with the environment and community? 	Both positive and negative ecological findings during CS participation led to empowerment (Excluding cs al. 2024) Self-efficacy with science (Phillips et al., 2018) "Place values" including sense of place and place attachment (Ballard et al. 2024; Haywood et al. 2016) and nature-connectedness are constructs associated with CS participation in local, field- based programs (Ecological et al. 2024; Butter et al. 2024)
Memories (Experiences)	Long-term participants likely have unique memories of monitoring over the years No understanding of the personal and emotional experiences of volunteers What key memories/takeaways stand out to our monitors? What resonates with the individual when promoted?	Connection to nature (<u>Eichholtest</u> et al. 2024) and counteracting the "extinction of experience" (Ballard et al. 2024) Water quality monitoring of local streams enables "community connectedness and cooperation" (Ballard et al. 2024)

RESULTS & THEMES

- 1. Working through Vulnerability
- 2. Forming Place Identity
- An Infrastructure for Fostering Agency and Social Capital

"I like to go out and collect data and be a part of the big picture. I like to collect data that is going to help you know researchers learn more about our planet."

LESSONS LEARNED & FUTURE RESEARCH

Contact Information

Texas Stream Team TxStreamTeam@txstate.edu (512) 245-1346 www.TexasStreamTeam.org

PHOTO ARTIST CREDITS

Andrew Shirey Jenya Mendelenko

TEXAS STREAM TEAM

JUNIOR PROGRAMS

Chelsea Bivens, Claudia Campos, and Bess Price

February 6, 2025

THE MEADOWS CENTER FOR WATER AND THE ENVIRONMENT TEXAS STATE UNIVERSITY

TEXAS STREAM TEAM

Funding for the Texas Stream Team is provided in part by the United States Environmental Agency through the Texas Commission on Environmental Quality

AGENDA

10:00 - 10:15 KICK-OFF 10:15 – 10:35 EXPERIENCES RESEARCH **10:35 – 11:00** JUNIOR PROGRAMS 11:00 – 11:15 BREAK 11:15 – 12:00 E. COLI / R-CARD UPDATES 12:00 – 1:00 OPTICAL BRIGTHENER LAUNCH 1:00 – 2:00 LUNCH / FIELD AUDTI SESSION RECAP 2:00 – 3:00 FIELD AUDIT SESSION* 3:00 ADJOURN

*The Field Audit Session will be required for trainers out of compliance (<u>mandatory every two years</u>) at the time of the meeting to continue leading trainings and certifying individuals.

STUDENT LEADERSHIP IN ENVIRONMENTAL ACTION AWARD PROGRAM

Student Leadership in Environmental Action (SLEA) Award Program

The purpose of this award program is to empower high school students to utilize their water quality monitoring skills to engage with environmental concerns within their community.

- Students will follow program guidelines to create a short presentation which they will submit to TST.
- Each school year, one student will be awarded the SLEA award.

Roll-out : 2025-2026 school year!

Student Leadership in Environmental Action (SLEA) Award Program

To participate, high school students must:

- Become certified in Standard Core protocols or link up with a community scientist mentor.
- Participate in a minimum of 3 monitoring events at their site.
- Identify an environmental challenge at their site and propose a solution to address this challenge.

Student Leadership in Environmental Action (SLEA) Award Program

Presentation requirements at a glance:

- An overview of their site conditions with a map showing its location.
- · Identification of a problem, including the impact to environment and community implications.
- Description of how Texas Stream Team protocols were used.
- Contacts made within the community, if any.
- Proposed solution with action steps.
- Explanation of the community impact of the solution.
- Takeaways, lessons learned, and future implications.

Scoring Process

7

- Teacher or mentor provides the first round of scoring using the SLEA Project Rubric.
- Teacher or mentor must submit projects to TST by May 1st each school year.
- We will use the same rubric to score all project submissions.
- Winner will be announced during the second week of May!

	Exemplary 20-15 pts	Proficient	Developing	Needs Improvement 4-0 pts	Comments
Introduction/	Thorough description of site	Missing some detail	Site description lacks	Site description.	
	including several pictures	about site location.	detail. Images and mans	images, map, and	
Site Overview	and a detailed map. At least	Maps/images may not	are missing, or do not	monitoring events are	
	three monitoring events	clearly represent site.	clearly identify the site.	poorly represented	
20 points max	described.	May be missing detail of	Missing monitoring	and/or missing from	
		monitoring events.	events.	project.	
Identifying	Student is thoughtful in	Student determines a	Student identifies a	Student does not	
the Chellonge	determining the challenge.	challenge but lacks a	challenge at their site	identify a clear	
the Chattenge	Awareness of ecosystem and	clear connection to	but does not detail	challenge at their site	
	community impact is strongly	ecosystem and	ecosystem and/or	and does not connect	
20 points max	evident.	community impacts.	community impacts.	ecosystem and	
				community impacts.	
Proposing a	The proposed solution has	The proposed solution is	The proposed solution is	The proposed solution is	
Solution	been thoroughly considered	thoughtful but lacks	not practical and lacks a	incomplete. Community	
ootation	and the steps involved are	detail. Community	thoughtful connection to	groups have not been	
	detailed. Clear connection to	groups have not been	community groups.	considered.	
20 points max	community.	considered thoroughly.			
Community	Student thoroughly identifies	Student identifies project	Student's identification	Student does not clearly	
Imnact/	project impacts and provides	impacts and includes a	of project impact lacks	identify project impact.	
Takaawaya	a meaningful reflection of the	thoughtful but brief	depth. Student does not	Student does not	
Takeaways	project, including future	reflection of takeaways	provide a thorough	provide a description of	
	implications.	and future implications.	reflection of takeaways	takeaways.	
20 points max					
	Exemplary	Proficient	Developing	Needs Improvement	Comments
	10-9 pts	8-6 pts	5-3 pts	2-0 pts	
Resources	Works cited section contains	Student documents	Citations contain some	Student does not	
Cited	virtually no errors. All sources	most sources properly.	errors. Not all sources	acknowledge sources	
onou	were cited in this section.		are cited.	properly. Works Cited	
				section may be missing	
10 points max				on final project.	
Formatting	Project is engaging, neat, and	Project contains minimal	Project is difficult to read	Errors are prominent	
Requirements	well formatted. Project is free	errors. Text is mostly	and does not engage the	throughout the project,	
	of grammatical and spelling	easy to read, and	viewer. Images are	and distracting. Use of	
	errors.	addition of graphics is	present, but not used	design is not evident.	
TO POINTS MAX		sufficient.	effectively.		

Pilot Program: The Dripping Springs High School Stream Team Club

• Let's hear from the program pioneer and community science trainer:

Chelsea Bivens!

JUNIOR MONITOR AMBASSADOR PROGRAM (JMAP)

Youth ages 8-13 will now be able to
assist a certified Community
Scientist with monitoring and receive
credit through a junior certification
until they can attend a Texas Stream
Team Community Scientist training
event.

JMAP

Important notes:

- Parental / Guardian supervision remains a requirement; must be present for the entire duration of the monitoring event.
- Junior ambassador will never be fully responsible for a monitoring event by themselves and will always be under the close supervision of a certified community scientist.

JMAP

To participate, individuals must:

- 1. Connect with a certified community scientist in their community.
- 2. Attend <u>at least</u> 3 monitoring sessions with a certified community scientist.
- 3. Use the JMAP Registration Form to submit the completed Junior Monitor
 Ambassador Enrollment Form along with copies of the corresponding monitoring forms.

Goal is to offer a pathway to integrate minors through a youth mentorship style program that can provide hands on experience in water quality monitoring while becoming familiar with the parameters tested, concepts, and how the health of local water bodies impact them and their communities.

Contact Information

Texas Stream Team TxStreamTeam@txstate.edu (512) 245-1346 www.TexasStreamTeam.org

PHOTO ARTIST CREDITS

Andrew Shirey Jenya Mendelenko Madison Mitchell

TEXAS STREAM TEAM

BACTERIA MONITORING R-CARD RESEARCH

2/6/2025

Aspen Navarro, M.S., CPM Nicky Vermeersch, M.S.

> THE MEADOWS CENTE FOR WATER AND THE ENVIRONM

TEXAS STREAM TEAM

TEXAS STATE UNIVERSITY

unding for this research was provided in part by the US EPA through the Texas Commission on Environmental Quality and the National Oceanic and Atmospheric Administration

PROGRAM OVERVIEW

	A second	37	No de	Per la
		N. Com		X
R-CARD® ECC	Roth Bioscience, LLC	Received and examination of E. cor a	TH Bioscience, LLC TH NCE, LLC 3mL wa Caldow	

Goal: Pilot the use of R-CARD for bacteria monitoring

Determine comparability to Coliscan EasyGel and IDEXX (state methods)
Determine temporal behavior
Assess need for dilutions (saltwater)
Assess need for filtration (turbid samples)

- 3 internal R-CARD trainings
- Increased data collection starting September 2024
 - 62 sites total
 - Variety of methods
 - Bacteria Type
 - 14 sites analyzing Entercoccus
 - 48 sites analyzing E. coli

MONITORING METHOD	# OF SITES
R-CARD, Coliscan, & IDEXX	13
R-CARD & Coliscan	15
R-CARD & IDEXX	29
R-CARD	5

FINDINGS THUS FAR

- Uninoculated samples not needed for RCARD
- Ideal incubation time is 24 hours for E. coli
- Ideal incubation time is 36 hours for Entero
- Green/teal colony must be at least 0.5 mm (pinpoint size)
- Proven transferrable to CS programs
- Slight variation in results between Coliscan and RCARD – need to determine significance

CONTINUE INTENSIVE FIELD WORK

FIRST DATA ANALYSIS LATE SPRING OR EARLY SUMMER RESEARCH OTHER PROGRAMS USING THIS METHOD CONTINUE TO KEEP TCEQ IN THE LOOP

SPECIAL THANKS!

San Marcos River Foundation

OPTICAL BRIGHTENER COMMUNITY SCIENCE METHODS TO DETECT HUMAN FECAL CONTAMINATION

Prepared by: Desiree Jackson

February 06, 2025

What is *Escherichia coli* (*E. coli*) Bacteria?

- Found in the feces of humans and warmblooded animals
- Used as an indicator of fecal pollution and pathogen contamination in freshwater
- Can pose health risks such as bloating, vomiting, and diarrhea
- Used as the water quality standard (126 MPN/100 ml) for contact recreational use

What are Optical Brigtheners?

- Chemical compounds or dyes used as whitening agents
- Added to laundry detergents, toilet paper, cleaning supplies, textiles, and more
- Used as an indicator of wastewater contamination
- Absorb to cotton and fluoresce under ultraviolet
 light
- Can assist in pollution screening and fecal source identification

Clean Rivers Program – Cypress Creek

- Quarterly monitoring 2016 2023
- E. coli water quality standard is 126 MPN/100 ml
- Cypress Creek geometric mean for all sites combined = 34 MPN/100 ml
- The two downstream bacteria exceedances prompted the research study

Cypress Creek Watershed, Hays County, Texas.

Clean Rivers Program – Cypress Creek

- Quarterly monitoring 2016 2023
- E. coli water quality standard is 126 MPN/100 ml
- Cypress Creek geometric mean for all sites combined = 34 MPN/100 ml
- The two downstream bacteria exceedances prompted the research study

Station Name	Number of Samples	Geometric Mean (MPN/100 mL)
Jacobs Well	27	4
Camp Young Judea	23	18
Woodcreek Dr.	19	9
RR12 Cottages	27	40
Blue Hole	27	43
RR12 Wimberley	33	215
Blanco Confluence	26	220

Clean Rivers Program: Cypress Creek Quarterly Monitoring Data (2016-2023) (MPN = most probable number, mL = milliliters).

Research Objectives

Monitor *E. coli* bacteria to identify potential sources of contamination in lower Cypress Creek

Conduct optical brightener monitoring concurrently as a pollution screening tool

Develop preliminary statewide community science resources to serve as a warning system for wastewater contamination

Provide recommendations to stakeholders to reduce fecal contamination in lower Cypress Creek

Study Area - Lower Cypress Creek

- Phase 1: June September 2021
- Phase 2: September 2021 March 2022
- Phase 3: April December 2022
- Key Characteristics
 - Development serviced by septic systems
 - Bat colony
 - Stormwater tributary

Optical Brightener Monitoring

- "Tampling" (Tampon + Sampling)
 - Modified recycled water bottle
 - Suspension of organic cotton tampon in waterbody for 1-3 days
 - Qualitative Presence/Absence test using UV light
 - Inexpensive, little technical skill, low sensitivity

Handheld Fluorometer

- Implemented to quantify "tampling" results
- Lab measurements
- 5- and 10-minute UV light exposure intervals to discern background fluorescence
- Tracking % reduction rate and ratio

Result s

- E. coli bacteria 483 samples
- OB Tampling 308 samples
- OB Fluorometry 657 measurements
- Sources of contamination:
 - Human wastewater
 - RR12 bat colony
 - Stormwater runoff

Results – "Tampling" Monitoring Resources

OPTICAL BRIGHTENER "TAMPLING" FIELD GUIDE

Equipment Needed

- Organic Cotton Tampons (e.g., natracare)
- Ziploc[®] bags or foil paper
- Container for sample retrieval
- Gloves
- 365 nm UV LED black light flashlight
- Recycled and rinsed empty water bottle modified with slits (Figure 1)
- Monofilament fishing line or strong rope
- Weighted kettle bell or similar object (Figure 2)

Note: Check all equipment for contamination prior to monitoring event. Optical brighteners rapidly photo decay when exposed to UV light. Protect the sample from UV light upon retrieval and transport prior to analysis.

Sample Location

Ideally, sample deployment should be in the centroid of flow. If you cannot secure the "tampling" array to a low hanging tree branch or root, you can use a weighted kettle bell or something similar. If unable to deploy at the centroid, choose a location as close to the centroid as possible. A location with shade is preferable to protect the sample from UV light exposure and photo decay.

Sample Deployment

1. Before deploying the "tampling" array, label each Ziploc[®] bag/foil with the site ID, date, and time deployed and retrieved.

2. Cut 4-6 inch equally spaced slits along the length of a plastic water bottle to allow water to flow through while still protecting the tampon from debris and sediment (Figure 1).

Figure 1. Modified Water Bottle

3. At the sampling location, use the monofilament line to tie a knot beneath the mouth of the water bottle and secure to a tree branch, roots, or kettle bell. You may need to weigh the bottle down with pebbles/rocks or tie it to an object to obtain the desired sampling location, preferably at centroid of flow (Figure 2).

4. Using gloves, unscrew the bottle cap and hold it in one hand; remove the tampon from the packaging. While holding the tampon string, place the tampon in the bottle so that it remains suspended about halfway down. While holding the string, replace the bottle cap so that the string is held in place by the cap (Figure 2).

5. Place bottle in the stream and ensure it submerges. Take a photo of the "tampling" array before leaving the site to document the location for retrieval later. Track the date and time of bottle deployment on Monitoring Form

Prepared in cooperation with the Texas Commission on Environmental Quality. Texas A&M AariLife Extension. Texas Stream Team, and the United States Environmental Protection Agency.

Sample Retrieval

1. Track the date and time of bottle retrieval on Monitoring Form. A minimum of 24-hours and a maximum of 3 days is recommended between the deployment and retrieval of the "tampling" array.

2. Using gloves, retrieve the bottle. Remove the tampon from the bottle. Rinse the tampon with sample water to wash off excess sediment and squeeze out as much water as possible. Place the tampon in appropriately labeled Ziploc[®] bag/foil.

3. Place the Ziploc[®] bag/foil in a dark container for transport to minimize exposure to UV light.

Sample Analysis

1. In a dark setting with minimal light pollution, remove the Ziploc[®] bag/foil from the transportation container. Place the tampon on a clean surface to prevent cross contamination.

2. Gently unravel the tampon and position it to best expose as much of the surface area for analysis.

3. Turn on the 365 nm black light flashlight and expose tampon

4. Observe the tampon for distinctive blue fluorescence (Figure 3.A). Notes for Presence/Absence:

- a. If you find distinctive blue spots within the cotton fibers of the tampon (gently pull apart fibers to confirm), even if small amount, mark as "Positive" (Figure 3.A).
- b. Blue flecks on the surface of your tampon (Figure 3.B) are likely from contamination after retrieval. This "surface contamination" would NOT count as a positive result. (When in doubt, use (uncontaminated) tweezers to see if blue flecks are easily removed from surface).
- c. Note: Other colors may show up with UV light (red = photosynthetic material, purple = decaying organic material, etc). This result refers ONLY to the blue fluorescence.

Figure 3. A. Tampon with optical brightener fluorescence.

Figure 3. B. Contaminated tampon with blue flecks.

5. Document presence or absence of fluorescence on Monitoring Form and take a picture of the exposed tampon.

6. Dispose of the sample in household waste.

Prepared in cooperation with the Texas Commission on Environmental Quality, Texas A&M AgriLife Extension, Texas Stream Team, and the United States Environmental Protection Agency.

Last Updated: September 5, 2023

E. coli Bacteria and Optical Brightner Manuscript

- Citizen Science: Theory and Practice (CSTP)
- Methods Paper (not to exceed 6,000 words)
- Authors:
 - Desiree Jackson
 - Sandra Arismendez
 - Kelly Albus
 - Ben Hendrickson
 - Aspen Navarro

THANK YOU!

TEXAS STREAM TEAM OPTICAL BRIGHTENER COMMUNITY SCIENTIST TRAINING

Aspen Navarro, M.S., CPM

THE MEADOWS CENTER FOR WATER AND THE ENVIRONMENT

TEXAS STREAM TEAM

Texas Stream Team is funded in part through a grant from the U.S. Environmental Protection Agency through the Texas Commission on Environmental Quality

OPTICAL BRIGHTENERS HIGHLIGHTS

- Enhance the appearance of materials by making them look whiter and brighter (fluoresce)
- Manufacturers implemented in commercial and household products in the 1940s
- Photo decay when exposed to UV light

OPTICAL BRIGHTENER SOURCES

ENVIRONMENTAL CONCERNS

- Not biodegradable; accumulate in water bodies and sediment.
- Potential Indicators of Wastewater Contamination
- Limited understanding of their impact on aquatic life and ecosystems.

SOURCE TRACKING

- Effluent from wastewater treatment plants
- Illicit discharges (failing or malfunctioning septic systems)
- Industrial effluents (laundries, textile manufacturing, carpet cleaners, and paper mills)
- Stormwater runoff (urban areas)
- Agricultural runoff (rural areas with septic systems)

OPTICAL BRIGHTENER MONITORING

- Detectable using 365 nm UV LED black lights.
- Complements bacterial data for more accurate pollution source tracking.
- Routine data collection for trend analysis.
- Serve as a low-cost preliminary screening tool.
- No screening criteria set by the TCEQ for optical brighteners

OPTICAL BRIGHTENER IMPLEMENTATION

- Must be bacteria certified
- Best if used alongside active bacteria monitoring
- Method:

 Deploying cotton pad → retrieving and analyzing for fluorescence under a blacklight → record results

COLLECTION METHODS

- Whirl-Pak® Bag Method A water sample is collected in a black photo-sensitive Whirl-Pak® bag.
 - Suitable for tidally influenced streams.
 - Useful when accessing the centroid of flow is challenging.
 - Ideal for shorter deployment times (24 hours).
- **Modified Bottle Method** A slitted plastic bottle is used to house a tampon, allowing water to flow through.
 - Ideal for streams with consistent flow.
 - Ideal when the centroid of flow is accessible.

OPTICAL BRIGHTENER DETECTION

- Document all observations, including photographs of site and nearby environmental factors
- Expand monitoring
- Notify county authorities about potential septic tank inspections
- Conduct monitoring throughout various seasons and conditions

The distinct blue fluorescence confirms the presence of optical brighteners

These blue "flecks" suggest contamination introduced after sampling and are not indicative of optical brightener presence Brown coloration is due to sediment and does not indicate the presence of optical brighteners

Red fluorescence represents photosynthetic material and does not indicate the presence of optical brighteners

Red fluorescence signifies photosynthetic material and does not indicate the presence of optical brighteners

This distinct blue fluorescence indicates the presence of optical brighteners

This sample shows no fluorescence and will be marked as "Absent." Only record "Present" for samples displaying distinct blue fluorescence within the cotton fibers. Disregard red, purple, and brown coloration

COMING SOON

BRANDED MANUAL REMOTE AND SELF-PACED TRAINING

TRAINING **CHECKLIST**

WEBSITE

RESOURCES

PHOTO ARTIST CREDITS

Jason Allen Anna Huff Jennifer Idol Jenya Mendelenko Matthew Mohondro Andrew Shirey Erich Shlegel Pat Stroka

THE MEADOWS CENTER FOR WATER AND THE ENVIRONMENT

TEXAS STREAM TEAM

FIELD AUDIT SESSION

2/6/2025 Aspen Navarro, M.S., CPM

WHAT IS A FIELD AUDIT SESSION?

 A field audit session involves the observation and documentation of the field and lab monitoring protocols implemented by trained community scientists.

• Field audit sessions are conducted by a certified Texas Stream Team Trainer or Quality Assurance Officer.

WHO?

WHO PARTICIPATES IN A FIELD AUDIT SESSION?

- Trained community scientists:
 - o Standard Core
 - \circ Probe Core
 - \circ Advanced
 - o E. coli Bacteria
 - o Optical Brightener
 - Riparian Evaluation
 - Macroinvertebrate Bioassessment

WHERE?

WHERE IS A FIELD AUDIT CONDUCTED?

2

Suitable location where a monitoring event can take place

WHEN?

HOW OFTEN IS A FIELD AUDIT SESSION CONDUCTED?

- Every two years
- The initial training event serves as a field audit session

WHY? TO IMPROVE DATA QUALITY

- To ensure monitoring protocols are implemented consistently statewide
- To ensure measurements are comparable

HOW? HOW TO CONDUCT A FIELD AUDIT SESSION?

2

Step 1: Schedule

- Plan and schedule a field audit session
- Set location, date, and time
- Invite community scientists

Step 2: Documentation

 Print or prepare to use the latest monitoring form (paper or electronic)

2

Step 3: Inspect Monitoring Kit

- Ensure equipment is functional
- Check for damaged or expired reagents

Step 4: Conduct Monitoring Event

- Trainer/QAO
 observes technique
- Ensure QC checklist compliance
- Document any protocol infractions

Step 5: Review & Submit

 Trainer/QAO reviews monitoring form

5

- Discusses infractions
 & improvements
- Sign, date, and submit

FOR MORE INFORMATION CONTACT:

Texas Stream Team TxStreamTeam@txstate.edu 512.245.1346 www.TexasStreamTeam.org