2024 Computational Thinking Summer Institute Survey Findings

This document presents the findings from analyzing data collected using a pre/post survey of teachers in a summer institute on coding and computational thinking. Rich et al. (2020) developed the Teacher Beliefs about Coding and Computational Thinking (TBaCCT) survey to explore teacher knowledge about and self-efficacy for teaching coding in elementary grade levels. We administered the TBaCCT twice, at the start and the completion of the one-week summer institute. The surveys required that teachers enter their first and last name, which then allowed for linking the pre- and post-survey data by respondent for analysis.

The TBaCCT consisted of four subscales: Coding (7 items), Teaching (11 items), Value (10 items), and Computational Thinking (4 items). Example items included: Coding, "I can read a formula, (e.g., algorithm, equation, input/output process) and explain what it can do"; Teaching, "I can find uses of computer programming that are relevant for students"; Values, "Computing is an important 21st century literacy"; Computational Thinking, "I can identify where and how to use variables in the solution of a problem." The survey had six response options ranging from Strongly Disagree (1) to Strongly Agree (6). All items were positively worded, with high scores indicating high agreement.

CT Attitudes, Dispositions, and Self-Efficacy

Among the 27 teachers enrolled in the summer institute, a total of 24 completed both the pre- and post-surveys, indicating a loss of three to attrition. Table 1 shows basic descriptive statistics for the pre- and post-survey responses for the 24 teachers at the domain level, Coding, Teaching, Values, and Computational Thinking. Between the pre- to post-survey data, the results indicate the mean scores increased, and the standard deviations decreased suggesting that teachers' belief in and self-efficacy for CT understanding and classroom implementation increased during the duration of the summer institute.

Table 1	Survey Moone	and Standard	1 Daviotions I	Pre- and Post-Institute
Table 1.	. Survey ivieans	ana Standard	i Devialions F	re- and Post-Institute

		M	ean	Standard	Deviation
Domain (subscale)	N	Pre-Institute	Post-Institute	Pre-Institute	Post-Institute
Coding (e.g., I can read a formula (e.g., algorithm, equation, input/output process) and explain what it should do.)	192	3.30	5.25	1.37	0.70
Teaching (e.g., I can find uses for computer programming that are relevant for students.)	264	3.66	5.56	1.45	0.56
Values (e.g., Computing is an important 21st-century literacy.)	240	5.19	5.81	0.97	0.48
Computational Thinking (e.g., I can identify where and how to use variables in the solution of a problem.)	96	4.51	5.26	1.12	0.73

N values represent 24 participants times the number of items per domain as follows:

Coding Domain (8) = items C01 - C08; Teaching Domain (11) = items T01 - T11.

Values Domain (10) = items V01 - V10; Computational Thinking Domain (4) = CT01 - CT04.

Table 2 shows the results from paired pre-/post survey t-test analysis. The results show that the changes in all four subscales for pre- to post-survey were statistically significant. Cohen's D statistics were also calculated. The commonly used interpretation defines Cohen's D

calculations as effect sizes at select benchmarks of 0.2 or less (small), 0.5 (medium), 0.8 (large), and 1.3 or greater (very large) (Sullivan & Feinn, 2012, Table 1). Based on these effect size benchmarks statistics all domains were significant in increasing teachers' belief in and self-efficacy for CT understanding and classroom implementation with the greatest effective size coming from the domains of Coding (1.79) and Teaching (1.73).

Table 2. Paired t-test Results by Domain

						Co	ohen's D
Domain	N	Mean Diff	Std Err	t-test	Pr> t	Calc.	Effect Size
Coding	192	1.95	0.10	20.33	<.0001	1.79	Very Large
Teaching	264	1.91	0.09	22.17	<.0001	1.73	Very Large
Values	240	0.63	0.06	10.97	<.0001	0.81	Large
Computational Thinking	96	0.75	0.12	6.38	<.0001	0.79	Large

N values represent 24 participants times the number of items per domain as follows:

Coding Domain (8) = items C01 - C08; Teaching Domain (11) = items T01 - T11.

Values Domain (10) = items V01 - V10; Computational Thinking Domain (4) = CT01 - CT04.

Per Domain Item Results – Summary

The remaining portion of this report provides an item-by-item analysis per domain. Table 3 summarizes the Cohen's D effect size found in Tables 4b, 5b, 6b, and 7b. Based on the effect size benchmarks statistics, most of the items were significant in increasing teachers' belief in and self-efficacy for CT understanding and classroom implementation with the greatest effective size coming from items in Coding and Teaching domains.

Table 3. Cohen's D Effect Size Item Distribution per Domain - Summary

	_	Cohen's D Effect Size							
Domain	Items	Small	Medium	Large	Very Large				
Coding	8	0	0	1	7				
Teaching	11	0	0	2	9				
Values	10	0	2	7	1				
Computational Thinking	4	0	2	2	0				

Table 4a. Survey Means and Standard Deviations Pre- and Post-Institute by Coding Domain Item

		M	ean	Standard Deviation		
Item	N	Pre-Institute	Post-Institute	Pre-Institute	Post-Institute	
C01: I can describe fundamental computing concepts (e.g., loops, variables, algorithms, conditional logic, etc.).	24	2.96	5.46	1.23	0.66	
C02: I can correct mistakes in the coding of a computer program on my own.	24	2.63	5.13	1.31	0.68	
C03: I can suggest different solutions in order to solve coding problems.	24	3.58	5.29	1.44	0.69	
C04: I can look at a computer program and explain the purpose of each command.	24	3.00	5.13	1.22	0.74	
C05: I am good at finding patterns in data.	24	4.29	5.21	1.12	0.59	
C06: I can apply Boolean logic (e.g., IF, AND, NOT, OR) to solve problems with multiple conditions.	24	3.13	5.13	1.51	0.85	
C07: I can read a formula (e.g., algorithm, equation, input/output process) and explain what it should do.	24	3.79	5.46	1.32	0.51	
C08: I can plan out the logic for a computer program even if I do not know the specific programming language.	24	3.00	5.21	1.14	0.83	

Table 4b. Paired t-test Results by Coding Domain Item

						Co	ohen's D			
Item	N	Mean Diff	Std Err	t Value	Pr> t	Calc.	Effect Size			
	C01: I can describe fundamental computing concepts (e.g., loops, variables, algorithms,									
conditional	logic, etc	e.).								
	24	2.50	0.24	10.38	<.0001	2.53	Very Large			
C02: I can correct mistakes in the coding of a computer program on my own.										
	24	2.50	0.24	10.38	<.0001	2.40	Very Large			
C03: I can s	uggest d	ifferent solution	s in order t	o solve codii	ng problems					
	24	1.71	0.29	5.99	<.0001	1.51	Very Large			
C04: I can le	ook at a	computer progra	am and exp	lain the purp	ose of each	command	l .			
	24	2.13	0.25	8.48	<.0001	2.11	Very Large			
C05: I am g	ood at fin	nding patterns in	n data.							
C	24	0.92	0.22	4.24	<.001	1.03	Large			
C06: I can a conditions.	pply Bo	olean logic (e.g.	, IF, AND,	NOT, OR) t	o solve prob	lems with	multiple			
conditions.	24	2.00	0.30	6.65	<.0001	1.63	Very Large			
C07: I can reshould do.	ead a for	rmula (e.g., algo	rithm, equa	tion, input/o	utput proces	s) and ex	plain what it			
should do.	24	1.67	0.25	6.78	<.0001	1.67	Very Large			
C08: I can p		he logic for a co	omputer pro	gram even i	f I do not kn	ow the sp	ecific			
L 1 2 9	24	2.21	0.27	8.21	<.0001	2.22	Very Large			

Table 5a. Survey Means and Standard Deviations Pre- and Post-Institute by Teaching Domain Item

		M	ean	Standard Deviation	
Item	N	Pre-Institute	Post-Institute	Pre-Institute	Post-Institute
T01: I can explain basic computing concepts to children (e.g., algorithms, loops, conditionals, functions, variables, debugging, pattern-finding).	24	2.92	5.58	1.25	0.50
T02: I can help students debug their computer programs.	24	3.00	5.29	1.38	0.69
T03: I can find uses for computer programming that are relevant for students.	24	4.33	5.71	1.49	0.46
T04: I can integrate computer programming into my current curriculum.	24	4.38	5.75	1.38	0.44
T05: I know where to find the resources to help students learn to code.	24	3.63	5.75	1.44	0.44
T06: I believe that I have the requisite computer programming skills to integrate computing content into my class lessons.	24	3.63	5.54	1.35	0.51
T07: I can recognize and appreciate computing concepts in all subject areas.	24	4.46	5.71	1.47	0.46
T08: I can create computing activities at the appropriate level for my students.	24	3.33	5.58	1.27	0.58
T09: I can explain computing concepts well enough to be effective in teaching computing.	24	3.13	5.33	1.30	0.64
T10: I can explain how computing concepts are connected to daily life.	24	4.08	5.54	1.28	0.59
T11: I can develop and plan effective computing lessons.	24	3.33	5.38	1.37	0.58

Table 5b. Paired t-test Results by Teaching Domain Item

						Co	ohen's D			
Item	N	Mean	Std Err	t Value	Pr> t	Calc.	Effect Size			
					g., algorithm	ıs, loops, o	conditionals,			
functions, v	ariables, d	ebugging, pa	ttern-finding	g).						
	24	2.67	0.27	9.99	<.0001	2.79	Very Large			
T02: I can help students debug their computer programs.										
	24	2.29	0.27	8.63	<.0001	2.10	Very Large			
T03: I can f	ind uses fo	r computer p	rogramming	that are rele	evant for stud	dents.				
	24	1.38	0.31	4.41	<.001	1.25	Large			
T04: I can in	ntegrate co	mputer prog	ramming int	o my current	t curriculum.					
	24	1.38	0.27	5.01	<.0001	1.34	Very Large			
T05: I know	T05: I know where to find the resources to help students learn to code.									
	24	2.13	0.29	7.31	<.0001	1.99	Very Large			
T06: I belie	ve that I ha	ive the requis	site compute	r programmi	ing skills to i	integrate o	computing			
content into	my class l	essons.	_		_	_				
	24	1.92	0.26	7.32	<.0001	1.87	Very Large			
T07: I can r	ecognize a	nd appreciate	e computing	concepts in	all subject a	reas.				
	24	1.25	0.32	3.91	<.001	1.15	Large			
T08: I can c	reate comp	outing activit	ies at the app	propriate lev	el for my stu	idents.				
	24	2.25	0.25	9.00	<.0001	2.28	Very Large			
T09: I can e	xplain con	nputing conc	epts well end	ough to be ef	ffective in te	aching co	mputing.			
	24	2.21	0.27	8.21	<.0001	2.15	Very Large			
T10: I can e	xplain hov	v computing	concepts are	connected t	o daily life.					
	24	1.46	0.23	6.26	<.0001	1.46	Very Large			
T11: I can d	levelop and	d plan effecti	ve computin	g lessons.						
	24	2.04	0.27	7.50	<.0001	1.95	Very Large			

Table 6a. Survey Means and Standard Deviations Pre- and Post-Institute by Values Domain Item

		M	ean	Standard Deviation		
Item	N	Pre-Institute	Post-Institute	Pre-Institute	Post-Institute	
V01: Computing should be taught in elementary school.	24	5.42	5.96	0.78	0.20	
V02: Learning about computing can help elementary students become more engaged in school.	24	5.54	5.92	0.59	0.28	
V03: Computing content and principles can be understood by elementary school children.	24	5.38	5.96	0.65	0.20	
V04: My current teaching situation lends itself to teaching computing concepts to my students.	24	4.13	5.63	1.15	0.58	
V05: Knowledge of computer programming is necessary in most careers.	24	4.38	5.42	1.41	0.83	
V06: Providing more computing activities will enrich my students overall learning.	24	5.54	5.96	0.66	0.20	
V07: Computing is an important 21st-century literacy.	24	5.67	5.92	0.56	0.28	
V08: Computational thinking is an important part of today's science standards.	24	5.33	5.88	0.76	0.34	
V09: My current students are going to need to know how to code to remain competitive for jobs by the time they are adults.	24	5.21	5.63	0.93	0.71	
V10: Computing should be taught to special needs students.	24	5.29	5.88	0.69	0.34	

Table 6b. Paired t-test Results by Values Item

						Co	hen's D		
Item	N	Mean	Std Err	t Value	Pr> t	Calc.	Effect Size		
V01: Comp	uting shou	ıld be taught i	n elementar	y school.					
	24	0.54	0.15	3.68	<.01	0.95	Large		
V02: Learning about computing can help elementary students become more engaged in school.									
	24	0.38	0.12	3.19	<.01	0.82	Large		
V03: Comp	uting cont	ent and princ	iples can be	understood b	y elementar	y school o	children.		
	24	0.58	0.12	4.90	<.0001	1.21	Large		
V04: My cu	rrent teacl	ning situation	lends itself	to teaching c	computing co	oncepts to	my students.		
	24	1.50	0.25	6.04	<.0001	1.65	Very Large		
V05: Knowledge of computer programming is necessary in most careers.									
	24	1.04	0.27	3.82	<.001	0.90	Large		
V06: Provid	ling more	computing ac	tivities will	enrich my st	udents overa	all learning	g.		
	24	0.42	0.13	3.12	<.01	0.86	Large		
V07: Comp	uting is an	important 21	st-century li	teracy.					
•	24	0.25	0.11	2.30	<.05	0.56	Medium		
V08: Comp	utational t	hinking is an	important pa	art of today's	s science sta	ndards.			
•	24	0.54	0.16	3.41	<.01	0.93	Large		
V09: My cu	rrent stude	ents are going	g to need to k	know how to	code to rem	nain comp	etitive for		
jobs by the t						•			
	24	0.42	0.13	3.12	<.01	0.51	Medium		
V10: Comp	uting shou	ıld be taught 1	o special ne	eds students.					
	24	0.58	0.16	3.68	<.01	1.08	Large		

Table 7a. Survey Means and Standard Deviations Pre- and Post-Institute by Computational Thinking Domain Item

		M	ean	Standard Deviation	
Item	N	Pre-Institute	Post-Institute	Pre-Institute	Post-Institute
CT01: When I am presented with a problem, I can break it down into smaller steps.	24	5.17	5.63	1.05	0.49
CT02: I am able to generalize solutions that can be applied to many different problems.	24	4.50	5.29	0.88	0.69
CT03: I am good at solving puzzles.	24	4.46	5.08	1.02	0.88
CT04: I can identify where and how to use variables in the solution of a problem.	24	3.92	5.04	1.21	0.69

Table 7b. Paired t-test Results by Computational Thinking Item

						Со	hen's D			
Item	N	Mean	Std Err	t Value	Pr> t	Calc.	Effect Size			
CT01: When I am presented with a problem, I can break it down into smaller steps.										
	24	0.46	0.24	1.90	0.0694	0.56	Medium			
CT02: I am able to generalize solutions that can be applied to many different problems.										
	24	0.79	0.21	3.80	<.001	1.00	Large			
CT03: I am	good at so	lving puzzles	S.							
	24	0.63	0.19	3.31	<.01	0.65	Medium			
CT04: I can identify where and how to use variables in the solution of a problem.										
	24	1.13	0.28	3.96	<.001	1.14	Large			

References:

Rich, P. J., Larsen, R. A., & Mason, S. L. (2020). Measuring teacher beliefs about coding and computational thinking. *Journal of Research on Technology in Education*, *53*(3), 296–316. https://doi.org/10.1080/15391523.2020.1771232

Sullivan, G. M., & Feinn, R. (2012). Using Effect Size-or Why the P Value Is Not Enough. *Journal of graduate medical education*, 4(3), 279–282. https://doi.org/10.4300/JGME-D-12-00156.1