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rhizosphere microbiome via synthetic long
reads and avidity sequencing
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Abstract

Background The rhizosphere microbiome displays structural and functional dynamism driven by plant, microbial,
and environmental factors. While such plasticity is a well-evidenced determinant of host health, individual and com-
munity-level microbial activity within the rhizosphere remain poorly understood, due in part to the insufficient
taxonomic resolution achieved through traditional marker gene amplicon sequencing. This limitation necessitates
more advanced approaches (e.g., long-read sequencing) to derive ecological inferences with practical application. To
this end, the present study coupled synthetic long-read technology with avidity sequencing to investigate eukaryotic
and prokaryotic microbiome dynamics within the soybean (Glycine max) rhizosphere under field conditions.

Results Synthetic long-read sequencing permitted de novo reconstruction of the entire 185-ITS1-ITS2 region

of the eukaryotic rRNA operon as well as all nine hypervariable regions of the 165 rRNA gene. All full-length, mapped
eukaryotic amplicon sequence variants displayed genus-level classification, and 44.77% achieved species-level
classification. The resultant eukaryotic microbiome encompassed five kingdoms (19 genera) of protists in addition
to fungi — a depth unattainable with conventional short-read methods. In the prokaryotic fraction, every full-length,
mapped amplicon sequence variant was resolved at the species level, and 23.13% at the strain level. Thirteen spe-
cies of Bradyrhizobium were thereby distinguished in the prokaryotic microbiome, with strain-level identification

of the two Bradyrhizobium species most reported to nodulate soybean. Moreover, the applied methodology deline-
ated structural and compositional dynamism in response to experimental parameters (i.e,, growth stage, cultivar,
and biostimulant application), unveiled a saprotroph-rich core microbiome, provided empirical evidence for host
selection of mutualistic taxa, and identified key microbial co-occurrence network members likely associated

with edaphic and agronomic properties.

Conclusions This study is the first to combine synthetic long-read technology and avidity sequencing to profile
both eukaryotic and prokaryotic fractions of a plant-associated microbiome. Findings herein provide an unparalleled
taxonomic resolution of the soybean rhizosphere microbiota and represent significant biological and technological
advancements in crop microbiome research.
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Background

Microbial symbionts demonstrate the propensity to over-
come basal plant immunity, after which time they may
occupy host compartments and therewith engage in
mutualism, commensalism, and/or parasitism [1]. These
interrelationships exist across a context-dependent, tem-
porally plastic continuum [2, 3] and are pivotal for plant
health and physiology [4]. This is exemplified in the
rhizosphere, defined as the soil region directly influenced
by root exudates, where selective pressures imposed by
a host encourage the colonization of fitness-promoting
microorganisms [5]. Consequently, the assembly, func-
tion, and sustenance of the rhizosphere microbiome have
become focal points of intensive research endeavors, par-
ticularly within food crop systems, due to their intrinsic
link to plant health and broader implications for agricul-
tural sustainability [6].

The Fabaceae (Leguminosae) serve as model systems
for rhizosphere microbiome research given their capacity
to recruit diazotrophic bacteria for atmospheric nitrogen
fixation [7]. This is well evidenced by soybean (Glycine
max), a global staple crop for which rhizosphere micro-
biome dynamics have been extensively studied. Mendes
et al. [8] found that bacterial assemblages in the soybean
rhizosphere were less diverse than in corresponding bulk
soils, reflecting preferential selection of microbiota adept
in N, Fe, P, and K metabolism. Likewise, Zhang et al. [9]
surveyed 51 soybean fields across China, revealing that
while soil pH predominantly influenced bacterial com-
munities, eukaryotic assemblages were more responsive
to Mg levels. Biotic stressors including Fusarium virgu-
liforme [10], Phytophthora sojae [11], and Heterodera
glycines [12] have also been implicated to modulate soy-
bean rhizosphere microbiome structure, as have tillage
[13-15], biological product/fertilizer application [16],
host growth stage [13, 17], host genotype [18], and other
edaphic parameters [14, 15]. Nonetheless, one must
exercise caution when interpreting such findings, espe-
cially when bridging taxonomy with function, given the
incomplete representation of soil microbiota in public
databases as well as the inherent constraints of common
microbiome profiling methodologies (reviewed at-length
by Baldrian [19]).

Amplicon sequencing is a primary method for micro-
biome profiling, as microorganism identification is not
restricted by culturing capacity [20] and workflows are
resource-efficient in comparison to shotgun metagen-
omic approaches [21]. Leveraging PCR amplification
of marker genes, amplicon sequencing entails primer
annealing to conserved regions within rRNA oper-
ons and the use of adjacent hypervariable regions for
taxonomic classification [22]. In prokaryotes, the 16S
rRNA gene is targeted due to its nine hypervariable
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regions (V1 to V9) interspersed with highly conserved
sequences [23]. For eukaryotes, multiple regions within
the rRNA operon can be utilized. The 18S rRNA gene
(SSU or Small Subunit) serves a similar purpose to the
16S in prokaryotes, providing broad taxonomic iden-
tification [24]. For heightened resolution, the Internal
Transcribed Spacer (ITS) regions ITS1 and ITS2 are
chosen [25]. These regions are located between the
SSU and the 5.8S rRNA genes, and between the latter
and the Large Subunit (LSU or 28S rRNA gene) in the
operon [26]. PCR amplicon sequencing of such regions
produces amplicon sequence variant (ASV) read num-
bers that estimate organism abundances with reason-
able precision, though estimate accuracy can vary
significantly. Despite improved coverage of marker
gene-based approaches [27], traditional short-read
sequencing technologies are limited to the interroga-
tion of few hypervariable regions, rendering region-
specific bias [28], uncertain/erroneous taxonomic
classification [29], and limited classification beyond
genus level [19-21]. Many in the field recommend
using long read-based sequencing strategies to over-
come such limitations (i.e., Oxford Nanopore Technol-
ogy [ONT] and Pacific Biosciences [PacBio]) [30, 31];
yet, ONT has demonstrated inferior accuracy com-
pared to other sequencing platforms [32] and PacBio
remains relatively cost-prohibitive [31]. To derive trac-
table biological inference from microbiome profiling, it
is imperative to employ methodologies with enhanced
resolution, accuracy, and accessibility.

The LoopSeq platform by Element Biosciences (for-
merly Loop Genomics) is a synthetic long-read (SLR)
sequencing method that addresses many of the defined
challenges surrounding amplicon-based microbiome
profiling. To this end, each parent DNA molecule in
a sample is barcoded with a unique molecular identi-
fier (UMI) which is thereafter distributed intramolecu-
larly across the molecule [33]. Post-fragmentation and
sequencing, short reads sharing a UMI are assembled de
novo to reconstruct the entire parent molecule sequence.
This approach employs a consensus-driven error cor-
rection system that renders a higher fraction of error-
free reads compared to PacBio circular consensus reads
and the cited ONT per-base error rate [33]. LoopSeq
additionally minimizes the formation of PCR amplicon
chimeras, as chimeric molecules are unlikely to contrib-
ute to the consensus unless they dominate the reads for
a given UMI [33]. In practice, LoopSeq outperformed
V3-V4 short-read sequencing in terms of taxonomic res-
olution and identification accuracy for human gut micro-
biota [34], and was superior to V4 and PacBio in accuracy
and cost for soybean rhizosphere microbiome profil-
ing (~90% per-Mb cost reduction compared to PacBio)
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[29]. Thus, LoopSeq SLR technology holds transforma-
tive potential for comprehensive and precise microbiome
analysis across diverse study systems.

In the present study, the LoopSeq SLR platform was
used to profile the soybean rhizosphere microbiome
under field conditions. The experimental design incor-
porated two commercially available soybean cultivars
with contrasting levels of tolerance to E virguliforme-
induced Sudden Death Syndrome (SDS), the absence/
presence of an in-furrow/foliar biostimulant regimen,
and four growth stages spanning vegetative and repro-
ductive development (Fig. 1). Following DNA isolation
and library preparation, the UMI-tagged fragments were
sequenced using avidity chemistry, which independently
optimizes DNA template traversal and nucleotide identi-
fication, achieving an accuracy surpassing one error per
10,000 bp [35]. The resulting short reads were assembled
into SLRs spanning all nine hypervariable regions for the
16S rRNA gene or the entire 18S-ITS1-ITS2 region of
the eukaryotic rRNA operon. Complementary to stand-
ard microbiome assessment, 24 edaphic properties and
five agronomic traits were measured, integrated into
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phenotype-taxon networks, and used to prioritize taxa
with putative ecological relevance (Fig. 1).

Materials and methods
Site description and management
The test site was located at the Arkansas State University
Agricultural Teaching and Research Center (35° 50" 16”
N, 90° 40" 00” W). The cropland consisted of a Collins
silt loam (Coarse-silty, mixed, active, acid, thermic Aquic
Udifluvent) with a 0 to 1% slope and had been used his-
torically for the cultivation of a corn (Zea mays)-soybean
rotation in the absence of tillage. A cover crop blend of
black oat (Avena strigosa), Austrian winter pea (Pisum
sativum L. ssp. sativum var. arvense), and buckwheat
(Fagopyrum esculentum) was sown during the fallow
period using a Great Plains End Wheel No-Till Compact
Drill (Great Plains Manufacturing Incorporated, Salina,
KS, USA) with 19.05-cm row spacing. In addition, cattle
(Bos taurus) were grazed on the site for 10 d.

At the beginning of the growing season, the cover crop
was terminated using 1.46 L ha™! Roundup PowerMAX
3 (Bayer CropScience, Monheim, Germany) plus 0.37 L
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Fig. 1 Schematic representation of the experimental design. This graphic was created using BioRender (Biorender.com)
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ha™' Verdict (BASF, Ludwigshafen, Germany). Seven d
after, the test site was fertilized with P,Oy (51.45 kg ha™?),
K,O (99.87 kg ha™!), and S (3.03 kg ha™). Four passes
were made with a John Deere tandem disc (Deere and
Company, Moline, IL, USA), and were followed by one
pass with a Triple K field cultivator (Kongskilde Agricul-
ture, Albertslund, Denmark). Raised seedbeds were then
formed using a 2-row Hipper Roller (Brandt, Springfield,
IL, USA) with 76.2-cm row spacing. Approximately 2.34
L ha~! Command® 3ME (FMC Corporation, Philadel-
phia, PA, USA) plus 0.37 L ha™! Verdict® were applied
for pre-emergent weed control 2 d prior to the soybean
planting date. Soybeans (cultivars described below) were
then planted with a total row length of 106.68 m at a
seeding rate of 345,947 seeds ha™! using a John Deere
1705 4-row vacuum planter (Deere and Company). A sec-
ond fertilizer application was made 1 d after planting and
was equivalent to the first. Following plant emergence,
3.51 L ha™ Warrant (Bayer CropScience) and 2.34 L ha™*
Roundup PowerMAX 3 were applied for the management
of yellow nutsedge (Cyperus esculentus L.). Manual weed
removal was performed weekly throughout the growing
season. Moreover, a channeled (furrowed) surface irriga-
tion system ran along the north side of the test site and
was used to deliver one acre-inch water (~ 102,789 L) to
the crop. Irrigation began the first week in July and was
performed weekly until the third week in September.
Weather data for the growing season were obtained from
Visual Crossing Corporation (https://www.visualcros
sing.com/) and can be found in Additional file 1.

Experimental design

A randomized split-block design comprising eight rows
of BASF Credenz soybeans was used in this study. Four
rows consisted of the cultivar CZ4979X (maturity group
4.9; SDS-tolerant), while the other four were CZ4810X
(maturity group 4.8; SDS-susceptible). Both 4-row sec-
tions were divided into 6.096-m plots separated by
7.62-m buffer zones, yielding 8 randomized plots (4 con-
trol and 4 treatment) for each section (16 total). At the
early vegetative stage (V1 — one set of unfolded trifoliate
leaves), the biostimulant IgniteS* (AgriGro Incorporated,
Doniphan, MO, USA) was applied to the base of plants
in treatment plots at a rate of 1.17 L ha™!. The biostimu-
lant FoliarBlend (AgriGro Incorporated) was applied to
the foliage at mid-vegetative (V3 — third set of unfolded
trifoliate leaves) and early reproductive (R3 — full flower
inflorescence/reproductive stage) stages at a rate of 1.17
L ha™!. Biostimulant applications were made with a back-
pack sprayer within the inner 2 rows for each treatment
plot. Soybean growth stages were defined by Fehr and
Caviness [36].
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Soil sampling and DNA isolation
From each plot, a composite sample comprising 10 soil
cores was taken at the following growth stages: early
vegetative (V1—first unfolded trifoliate, preceding
biostimulant application), late vegetative (V6—6th node,
preceding anthesis), early reproductive (R2—full flower
inflorescence/reproductive stage), and late reproductive
(R6—full pod development) (i.e., 640 cores reduced to 64
composite samples). Spatially distributed selective pres-
sures reduce microbial diversity in proximity to the root
surface [37, 38], which must be considered during sam-
pling. Therefore, cores were collected with a 2 cm-diam-
eter auger 4 cm from the base of the plant to a depth of
10 cm (Fig. 1). Composite samples were collected in treat-
ment- and cultivar-specific vessels to minimize cross-
contamination. In addition, augers were sterilized in a
20% bleach solution (7.4% NaClO) for 5 min and rinsed
thoroughly with water between plot samplings. Collec-
tion and handling procedures were consistent across all
samples. Following collection, each composite sample
was homogenized, sieved to 2 mm, and subdivided for
downstream physiochemical, enzyme, and microbiome
analyses. Subsamples for enzyme and microbiome anal-
yses were placed immediately into sterile 50 mL conical
tubes, freeze-dried on solid CO,, and stored at— 80 °C.
DNA was isolated from 250 mg of each sample using
the DNeasy PowerLyzer PowerSoil Kit (Cat #12855-100)
according to the manufacturer’s protocol (QIAGEN,
Hilden, Germany). Following the addition of soil, Power-
Bead Solution, and Solution C1 to the PowerBead tube,
cells were lysed with a Precellys 24 tissue homogenizer
with the following program: 3000 RPM % 30 s duration
x three cycles with a 20 s delay between cycles. A Qubit
fluorometer (Thermo Fisher Scientific, Waltham, MA,
USA) paired with a dsDNA high-sensitivity assay kit (Cat
#Q32851) was used subsequently to estimate DNA con-
centration. DNA purity was approximated from 260/230
and 260/280 nm absorbance ratios using a NanoDrop
ND-1000 spectrophotometer. A sample without soil
served as a ‘kitome’ control during DNA isolation [39].
Additional positive (ZymoBIOMICS™ Microbial Com-
munity DNA Standard [Cat #D6305]) and negative (tem-
plate-free sample) controls were included for barcoding
and sequencing steps.

Amplicon sequencing and SLR assembly

Sequencing libraries were prepared at Element Bio-
sciences (San Diego, CA, USA) using the Ampli-
con LoopSeq for AVITI (Cat #840—-00002), Extension
LoopSeq for AVITI (Cat #840-00003), and Element
Elevate™ Library Circularization Kit (Cat #830—00001)
as per manufacturer guidelines. Initial steps involved
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target enrichment and PCR amplification of the 16S and
18S-ITS rRNA regions using the following primers: 16S
Fwd (5"-AGAGTTTGATCMTGGCTCAG-3"), 16S Rev
(5"-TACCTTGTTACGACTT-3"), 18S-ITS Fwd (5'-
TACCTGGTTGATYCTGCCAGT-3"), and 18S-ITS Rev
(5"-GGTTGGTTTCTTTTCCT-3, 5 -TAAATTACA
ACTCGGAC-3/, 5 -TCCTCCGCTTWTTGWTWT
GC-3’, 5’-CTBTTVCCKCTTCACTCG-3’). Subse-
quently, UMIs and a LoopSeq index were integrated into
each sample, and the barcoded samples were calibrated,
amplified, and multiplexed. Library preparation was then
performed by distributing each UMI to a random posi-
tion within the respective parent molecule, fragmenting
the barcoded molecules at each UMI position, and add-
ing Element indexes and adapters. The final library was
circularized and sequenced on the Element AVITI Sys-
tem (Cat #880-00001). All amplification conditions are
provided at https://github.com/brett-hale/Hale_2024_
SLR.git. The Bases2Fastq software (v1.4.0) was used to
convert the bases files into FASTQ files and de-multiplex
the pooled library based on index sequences.

Data processing was performed with the Element Bio-
sciences cloud-based platform, largely following the bio-
informatics pipeline established by Callahan et al. [33].
First, adapter sequences were removed from short reads
using Trimmomatic (v0.36) [40], and trimmed reads were
de-multiplexed based on their LoopSeq Index. Reads
within a grouped sample were then binned by UMI and
further processed through SPAdes (v3.9) [41], allowing
the de novo assembly of SLRs spanning the full length of
the defined rRNA operon sequence. The resultant SLRs
were further processed and thereafter clustered into
ASV bins of 100% sequence homology with the DADA2
R package (v1.28.0) [42] employing the specifications
outlined by Callahan et al. [33]. Taxonomic assignments
were conducted using BLAST, with a criterion of 97%
sequence similarity. Prokaryotic classifications were
based on the SILVA SSU database (v138) [43], while
eukaryotic identifications used the UNITE database (all
eukaryotes v8) [44, 45]. Short-read and SLR summary
data are provided in Supplementary Fig. 1, Additional
file 2; Additional file 3; and Additional file 4.

Microbiome statistical analysis

The ASV count matrices, taxonomic assignments, and
sample metadata were imported into RStudio (v4.2.2)
[46] and combined to create ‘phyloseq’ objects with the
phyloseq package (v1.42.0) [47]. ASVs mapped to king-
doms ‘Viridiplantae’ and ‘Metazoa’ were removed sub-
sequently from the 18S-ITS object to accentuate true
eukaryotic microbiota. Prior to statistical analysis, sam-
ples were decontaminated based on ASVs present in the
two negative controls using the ‘isContaminant’ function
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in the decontam package (v1.13) with a 0.5 prevalence
probability threshold [48]. Within-sample («) diversity
was then investigated by estimating the Chaol index [49],
Simpson diversity [50], and Shannon diversity [51] using
the ‘estimate_richness’ function in phyloseq. Pielou’s
evenness [52] was assessed with the ‘evenness’ function in
the microbiome package (v1.2.1) [53]. Rank-based meas-
ures of association between the eukaryotic and prokary-
otic Chaol indices, Shannon diversity, and between the
Chaol index and Shannon diversity were inferred using
the ‘cor.test’ function in the R package stats (v4.2.2), lev-
eraging Spearman’s p statistic [54]. The package ggplot2
(v3.4.2) [55] was used for data visualization.

The 16S and 18S-ITS « diversity datasets were divided
into the baseline measurement (V1) and growth stages
succeeding biostimulant application (V6, R2, and R6).
Within each partitioned dataset, the assumption of nor-
mality was assessed for Shannon diversity and Chaol
using the Shapiro—Wilk test [56] in the stats package. In
instances when the normality assumption was not met (p
value <0.05), data were fitted to five probability distribu-
tions using the ‘fitdist’ function in the fitdistrplus pack-
age (v1.1-11) [57], and the best-fitting distribution was
inferred from the minimum Akaike information crite-
rion (AIC). Distribution fit was supported qualitatively
with quantile—quantile plots generated with packages
car (v3.0-12) [58] and MASS (v7.3-54) [59]. Generalized
linear mixed models (GLMMs) were then implemented
with package glmmTMB (v1.1.7) [60]. Treatment, cul-
tivar, growth stage, and first-, second-, and third-order
interactions were incorporated as explanatory variables,
with field location incorporated as a random effect.
Automated model selection was performed with the
MuMin (v1.47.5) [61] ‘dredge’ function, with selection
constrained to models containing treatment, cultivar,
and growth stage. The best-fitting model was selected by
minimum AICc (second-order AIC) as recommended by
Burnham and Anderson [62]. Model fit was assessed with
standardized and deviance residuals leveraging package
stats. Additionally, 250 datasets were simulated and used
to calculate an empirical cumulative density function,
the residuals of which were examined through quantile—
quantile and residual-fitted value plots. Binomial and
Poisson models were checked explicitly for overdisper-
sion using ‘check_overdispersion’ from the performance
package (v0.10.3) [63]. Moreover, fixed effects retained in
final models were further evaluated by hierarchical parti-
tioning of marginal R? values using glmm.hp (v0.1-0) [64]
and through power analyses implemented with the ‘pow-
erSim’ function of the SIMR package (v1.0.6) [65]. Mar-
ginalized coefficients were extracted for models applying
a nonlinear link function with the ‘marginal_effects’ func-
tion of margins (v0.3.26) [66], and the mean coefficients
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(denoted hereafter as “mean estimates’, or “ME”) were
visualized with ggploz2.

Following a diversity estimation, unmapped ASVs were
removed from the phyloseq objects, and count matri-
ces were normalized by cumulative sum scaling (CSS)
with metagenomeSeq (v1.40.0) [67]. Condition-specific
(treatment-cultivar-growth stage) compositions were
then visualized at the phylum level with ggplot2. There-
after, compositional dissimilarity was assessed at ASV
level for samples preceding and succeeding biostimulant
application using Bray—Curtis, Euclidean, and Jaccard
distances [68, 69] with the function ‘distance’ in phyloseq.
Statistical trends in community structure were inferred
by conducting permutational multivariate analysis of
variance (PERMANOVA) with the defined dissimilarity
matrices. Each PERMANOVA was performed indepen-
dently with the ‘adonis2’ function in vegan (v2.6—4) [70]
specifying treatment, cultivar, and growth stage as well
as first- and second-order interactions as explanatory
variables, and with 9,999 permutations constrained by
field location. Compositional variance attributed to each
explanatory variable was inferred from PERMANOVA R?
values. Multivariate homogeneity of group dispersions
was then analyzed with the vegan function ‘betadisper’
Analysis of variance (ANOVA) was used subsequently
to determine if distances to group centroids varied sig-
nificantly between fixed effect levels. PERMANOVA and
dispersion test results were consistent across dissimilar-
ity matrices (Supplementary Table 1, 2, Additional file 2);
therefore, representative ordinations of Bray—Curtis dis-
similarity were plotted using Principal Correspondence
Analysis (PCoA) and Non-metric Multidimensional Scal-
ing (NMDS) with the ‘ordinate’ phyloseq function and
ggplot2. In the post-biostimulant application datasets, the
‘simper’ function from the vegan package was employed
to determine the contribution of individual ASVs to the
Bray—Curtis dissimilarity between levels of each fixed
effect [71]. The top five ASVs for each pairwise compari-
son were identified, their taxonomy extracted from the
phyloseq object, and their contribution percentage visu-
alized using the ComplexHeatmap package (v2.14.0) [72].
Lastly, Bray—Curtis dissimilarity matrices were recon-
structed with CSS-normalized counts from both mapped
and unmapped full-length ASVs, compositional trends
were assessed via PERMANOVA and B dispersion esti-
mation, and parallels were discerned between the full and
partial dataset analyses.

The taxonomic resolution achieved with both 16S and
18S-ITS amplicon sequencing enabled the retrieval of
functional profiles for most mapped ASVs. Genus-level
eukaryotic functions were sourced from the FungalTraits
database (v1.2) [73]. Prokaryotic functional profiles were
derived at the species level from BacDive, a bacterial/
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archaeal metadatabase maintained by the German Col-
lection of Microorganisms and Cell Cultures [74]. The
‘retrieve’ function of the R package BacDive (v0.8.0) [75]
was employed with parameters set as “query=species
list” and “search=taxon” The resulting metadata was
narrowed to terms including “aerobe’, “philic’, “path’;, and
“gram’, reflecting O, tolerance, temperature range, patho-
genicity, and gram stain, respectively. The collated eukar-
yotic and prokaryotic data were then combined into a
comprehensive functional data frame capturing Struc-
ture (eukaryotic fruiting body/prokaryotic gram stain),
Growth (eukaryotic growth form/prokaryotic tempera-
ture range), Environment (eukaryotic aquatic habitat/
prokaryotic O, tolerance), and Lifestyle/Pathogenicity.
This data informed and contextualized taxa highlighted
in subsequent analyses.

Community membership was determined at genus and
species levels for eukaryotic and prokaryotic communi-
ties, respectively, which were the lowest taxonomic clas-
sifications to which all full-length, mapped ASVs could
be identified. Core taxon analysis was performed with the
microbiome package by first converting CSS-normalized
counts to relative abundances with the function ‘trans-
form’ and specification ‘compositional, and by subse-
quently obtaining taxa with a prevalence>0.5 with the
‘core_members’ function. The relative abundance of core
taxa was visualized with the ComplexHeatmap package.
The ASVs unique to a fixed effect level were retrieved
using the ‘unique_taxa’ function of the phylosmith pack-
age (v1.0.6) [76]. The full dataset was used to identify
unique ASVs between cultivars and growth stages. The
analysis was repeated for treatment with datasets par-
titioned into the baseline measurement and samplings
succeeding biostimulant application, and ASVs retrieved
exclusively from the latter dataset were deemed unique
to a level of treatment. This information was used to
identify unique and shared taxa across fixed effects and
domains, which were visualized with Venn diagrams
constructed with ggvenn (v0.1.10) [77] as well as with
ComplexHeatmap.

Differentially abundant taxa were identified between
fixed effect levels with MaAsLin2 (Microbiome Mul-
tivariable Associations with Linear Models) (v1.12.0)
[78]. CSS-normalized counts for taxa with a minimum
prevalence>0.1 were fitted with a zero-inflated negative
binomial (ZINB) regression model composed of treat-
ment, cultivar, and growth stage as fixed effects and field
location as a random effect. Maaslin2 inherently cor-
rects for multiple testing using the Benjamini—Hochberg
approach, thus taxa with a g-value<0.25 were deemed
significant as recommended by the package authors [78]
and as reported in the literature [79, 80]. Consistent with
unique taxon identification, the full dataset was used
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to identify differentially abundant taxa between levels
of cultivar and growth stage, with partitioned datasets
deployed for treatment. Regarding the latter, taxa exhibit-
ing statistically significant, consistent directional changes
(both positive or negative coefficients) across the base-
line and post-treatment datasets were excluded. Con-
versely, taxa that displayed opposing directional changes
between the two datasets (i.e., positive in one and nega-
tive in the other), or were present exclusively in the post-
treatment dataset, were retained. Log-normalized False
Discovery Rate (FDR;-sign[coefficient)*log(g-value])
for differentially abundant taxa were visualized with
ComplexHeatmap.

To further assess community membership, eukaryotic
and prokaryotic phyloseq objects were combined and
conglomerated at the genus level with the ‘merge_phy-
loseq’ and ‘conglomerate_taxa’ functions, respectively, of
the phylosmith package. A global pairwise Spearman co-
occurrence network was then constructed by obtaining
significant positive and negative associations (p> +0.6,
p value <0.05) with the phylosmith ‘co_occurrence’ func-
tion. The p-values were corrected for multiple testing
using the stats function ‘p.adjust’ specifying FDR correc-
tion. Associations with a g-value<0.05 were visualized
with the phylosmith function ‘co_occurrence_network’
with nodes representing genera and edges representing
positive and negative associations.

Condition-specific co-occurrence networks (n=16)
were constructed as described for the global networks,
and the phylosmith ‘network_layout_ps’ function was
used subsequently to create a graph object from each
set of co-occurrences. Comparisons of network topol-
ogy were then performed by calculating centralization
degree (the concentration of network centrality), cluster
count, connectance (the proportion of possible connec-
tions that are present), edge count, node count, and mean
degree (the average degree [number of connections] of
nodes) with the ‘net_properties’ function in the ggClus-
terNet R package (v0.1.0) [81]. Giant component size (the
size of the largest connected component) and modular-
ity (the extent to which a network can be divided into
non-overlapping communities) were determined with
the igraph R package (v1.4.2) [82]. For the latter metric,
nodes were assigned to communities using the Walktrap
algorithm [83] implemented with the ‘cluster_walktrap’
function, and modularity was calculated with the ‘modu-
larity’ function using the community membership vector
as input. Moreover, microbial co-occurrence networks
inherently exhibit a scale-free topology in which node
degrees follow a power-law distribution [84]. To this
end, condition-specific graph objects were converted to
degree distribution vectors with the igraph ‘degree_distri-
bution’ function, and a power-law distribution was fitted
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to each vector with the ‘fit_power_law’ igraph function.
The Kolmogorov—Smirnov (KS) test statistic was used to
quantify the distance between node degree distribution
and a power-law distribution. Nodes were prioritized
for each network by assigning Kleinberg’s hub central-
ity scores [85] with the igraph function ‘hub_score’ with
logical scaling applied. Nodes with a hub score>0.2 were
considered hubs, which was consistent with prior studies
[86]. To further support predicted co-occurrences, global
and condition-specific networks were reconstructed with
Pearson associations [87] following the described meth-
odology. Unique and shared co-occurrences and nodes
between the association methods were visualized with
ggvenn Venn diagrams. Additional rank-based Spear-
man associations were inferred between edge count
and node count (network properties used commonly to
reflect density) and the remaining topological features
for each set of condition-specific networks. Further-
more, Friedman rank sum tests [88] were applied with
the stats package to assess the differential ranking of con-
ditions between association methods for each topologi-
cal feature. Network membership was visualized using
ComplexHeatmap.

Significant microbial co-occurrences, identified
through global networks of one or both association meth-
ods, were combined with edaphic and agronomic param-
eters (n=24 and 5, respectively; methodology described
hereafter) to construct phenotype-taxon networks using
the PhONA (phenotype-OTU network analysis) R pack-
age (v0.2) [89]. This package first employs lasso regres-
sion to identify taxa predictive of a defined phenotype.
From these predictive taxa, PAONA constructs a general-
ized linear model (GLM) and subsequently integrates the
GLM with the user-provided co-occurrence matrix [89].
All sample information was used for edaphic parameter
network analysis, while agronomic parameter network
analysis was performed with samples from the R6 growth
stage. Resulting phenotype-taxon networks were recon-
structed with igraph, and network membership was visu-
alized using ComplexHeatmap.

The PhONA package assigns modularity roles to each
node by computing connectivity (within-module z-score
of edge weights) and a participation coefficient (distribu-
tion of a node’s links across different modules), method-
ology consistent with the ruetcarto R package [89, 90]. In
this study, the modularity analysis was augmented with
Kleinberg’s hub centrality (computed as described for
co-occurrence networks), providing a more nuanced dif-
ferentiation of core network nodes based on information
dissemination roles. The three metrics were individu-
ally normalized to a [0,1] scale and then combined with
equal weights to compute a composite centrality score for
each node in the phenotype-taxon network. Nodes were
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prioritized by first filtering to those with a>0.2 preva-
lence across all samples in an effort to minimize biased
associations while retaining putative specialization [91].
Thereafter, genera were ranked by mean composite score,
accentuating those for which a phenotype could indicate
a niche specialization in addition to those central across
all networks. The top 20 genera were obtained for each
parameter type (edaphic and agronomic), and rank-based
measures of association were inferred between genera
using CSS-normalized counts, as well as between genera
and edaphic/agronomic parameters.

Edaphic parameter estimation

Freeze-dried subsamples were sent to Ward Laboratories
Inc. (Kearney, NE, USA) for quantitative assessment of
B-glucosidase (GB3), N-acetyl-B-glucosaminidase (NAG),
phosphodiesterase (PDE), alkaline phosphatase (ALP),
acid phosphatase (ACP), and arylsulfatase (ARS). The
GB3 assays were based on Moscatelli et al. [92] meth-
ods, while NAG assays employed procedures from Deng
and Popova [93] and Parham and Deng [94]. Both phos-
phatase enzymes were analyzed using Nannipieri et al.
[95] protocols. The ARS assays followed the methodolo-
gies of Tabatabai and Bremner [96] and Klose et al. [97].
Each assay utilized 2 g of soil, and enzymatic activities
were quantified using a BioTek Epoch 2 Microplate Spec-
trophotometer (Agilent Technologies, Santa Clara, CA,
USA).

The remaining subsamples were kept in plastic bags at
room temperature until shipment to Waypoint Analyti-
cal (Memphis, TN, USA) where the following macro- and
micronutrient levels were measured following stand-
ard Mehlich 3 Extraction procedure [98]: B, Ca, Cu, Fe,
K, Mg, Mn, Na, P, S, and Zn. Additionally, soil pH was
assessed using the 1:1 soil-water ratio method and buffer
pH using the Shoemaker—McLean—Pratt (SMP) proce-
dure [99]. Soil organic matter (SOM) was estimated using
the Loss-on-ignition method [100] and N in the form
NO;- as defined by Swift and Sparks [101]. Lastly, the
percent saturation of Ca, H, K, Mg, and Na were used to
estimate cation exchange capacity (CEC) in milliequiva-
lents per 100 g (meq/100 g) of soil. Detailed protocols for
all edaphic measurements can be found in Gavlak et al.
[102].

Pairwise rank-based measures of association were
inferred across all parameters. Furthermore, differences
between fixed effect levels for each parameter were
assessed using GLMMs as described previously.

Agronomic parameter estimation

When soybean plants reached physiological maturity
(R8—95% of pods have reached their full mature color),
three plants per plot (n=48) were selected randomly for

Page 8 of 28

measurement of the following characteristics: pods per
plant (exclusive to those containing>1 full seed), root
biomass, and aboveground biomass. For biomass meas-
urements, roots were rinsed gently with tap water to
remove substrate and plants oven-dried at 60 °C for 72 h.
Roots were then cut at the soil line (~4 c¢m above the 1st
lateral root) and root and aboveground dry weight deter-
mined independently. Plant selection and data collection
were performed by researchers blinded to experimental
conditions.

One hundred-seed weight and theoretical grain yield
were also determined at the R8 growth stage. First, an
area of 1.16 m? was selected randomly from each plot and
manually harvested. Collected plants were threshed using
a stationary Plot Master Combine (ALMACO, Nevada,
IA, USA). Seed moisture was then assessed using a mini
GAC® Plus Grain Moisture Tester (Dickey-John Corpo-
ration, Auburn, IL, USA) and seed weight calculated at
a 13% moisture base. Theoretical grain yield was deter-
mined in kg ha™ with the corrected seed weight.

GLMMs were used to discern differences between lev-
els of treatment, cultivar, and treatment-cultivar interac-
tions. In instances where multiple plants were selected
per plot, plant replicates were modeled as nested ran-
dom effects to account for a lack of independence among
observations.

Additional information

Plant lodging was observed around R5 (beginning of seed
fill). In addition, Cercospora leaf blight (Cercospora kuku-
chii) and soybean stem borer (Dectes texanus) damage
occurred between R6 and R8 (full seed to maturity).

Results

SLRs enabled a taxonomically resolved assessment

of the soybean rhizosphere microbiome

The present study employed SLR technology in tandem
with avidity sequencing to explore the composition
and structure of the soybean rhizosphere microbiome.
For 18S-ITS amplicon sequencing targeting eukary-
otes, this method generated a collective 852 M short
reads assembled into 1.4 M SLRs averaging a length of
1108.31 £663.99 bp (full and partial length) (Supple-
mentary Fig. 1, Additional file 2; Additional file 3). Sim-
ilarly, the full-length SLRs were 1084.69+671.98 bp.
From these, 1,014 denoised ASVs were classified at the
genus level using the Ensemble reference database, and
44.77% could be further classified at the species level.
The mapped eukaryotic SLRs were 2328.54+213.7 bp.
Conversely, the 16S (prokaryotic) dataset comprised
192 M short reads, resulting in 1.4 M SLRs with a mean
length of 1362.44 +291.46 bp (Supplementary Fig. 1,
Additional file 2; Additional file 4). The full-length
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contigs were 1,476.06+70.51 bp in length. Mapping
these to the Silval38 database permitted the identifica-
tion of 895 ASVs, all classified at the species level, with
207 (23.13%) achieving strain-level classification. The
mapped prokaryotic SLR length was consistent with
that of all full-length SLRs, being 1477.64 +25.15 bp.

The soybean rhizosphere microbiome displayed a
diverse taxonomic profile spanning seven kingdoms.
The eukaryotic fraction consisted primarily of partly
aquatic, saprotrophic fungi that exhibit perithecial
fruiting bodies and filamentous mycelial growth forms,
while the prokaryotic fraction largely comprised gram-
negative, mesophilic, aerobic bacteria. Beyond bacte-
ria and fungi, protist populations from five kingdoms
were observed: Alveolata, characterized by membrane-
bound sacs (alveoli) beneath the plasma membrane
[103]; Apusozoa, flagellated unicellular eukaryotes
[104]; Heterolobosa (i.e., Heterolobosea), protists with
both amoeboid and flagellated stages [105]; Rhizaria,
identified by their thread-like pseudopodia [106]; and
Stramenopila, which encompasses diatoms, brown
algae, and oomycetes, differentiated by their heterokont
flagella [107].
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Growth stage and spatial heterogeneity best explained
microbiome structure

In assessing microbiome complexity and structure, the
within-sample characteristics of ASV richness, diversity,
and evenness were determined and compared across
treatments, cultivars, and growth stages (Fig. 2A-C).
ASV richness was measured with the non-parametric
estimator Chaol given its capacity to project undetected
taxa based on the abundance of those rarely observed in a
dataset. This extrapolated measure accounts for potential
undersampling in high-diversity environments (e.g., soil),
providing a more thorough assessment of community
richness [49, 108]. Herein, the mean eukaryotic Chaol
index value was 1,033 £ 36, and was increased marginally
in growth stage R6 vs R2 (p-value=0.07, ME=220.62)
and in cultivar CZ4979X vs CZ4810X (p-value=0.09,
ME=205.38) (Fig. 2C). A cultivar-growth stage inter-
action was also observed and explained the highest
proportion of variance (marginalized R?*=0.88), with
CZ4979X:R6 being significantly less than the reference
(p-value=0.0023, ME=-533.75) (Fig. 2C). The prokary-
otic Chaol index was 85.44+8.76 and demonstrated
a significant increase in R6 vs R2 (p-value=0.0099,
ME=50.28) and significant decreases in CZ4979X vs
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CZ4810X (p-value=0.04, ME=-32.24) and in treatment
control vs biostimulant (p-value=0.04, ME=-31.72)
(Fig. 2C). Moreover, growth stage explained the highest
proportion of variance for prokaryotic Chaol (margin-
alized R?=0.45). The baseline (V1) sampling showed no
significant trends in the eukaryotic or prokaryotic Chaol
indices.

Shannon and Simpson indices were estimated to
comprehensively assess a diversity. The Shannon index
integrates ASV richness and evenness, with increas-
ing values indicative of greater diversity and uniformity
among ASV abundances [51]. Conversely, the Simpson
index quantifies ASV dominance, where elevated values
denote diminished dominance and heightened diversity
[50]. The two indices displayed cooperative, statistically
insignificant trends across fixed effect levels in the pre-
sent study. Eukaryotic a diversity (6.3+0.07 Shannon and
0.99 £0.002 Simpson) peaked at the R2 growth stage (evi-
denced by ME at V6 vs R2 and R2 vs R6), was reduced
in CZ4979X vs CZ4810X, and was increased in control
vs biostimulant, with growth stage explaining the high-
est proportion of variance (marginalized R*=0.73 and
0.33 for Shannon and Simpson indices, respectively)
(Fig. 2C). The prokaryotic a diversity indices (3.82+0.09
Shannon and 0.94+0.007 Simpson) demonstrated an
opposing trend, increasing with time and being reduced
in control vs biostimulant (Fig. 2C). The direction of
change between CZ4979X and CZ4810X was consistent
with eukaryotic « diversity, and variance was most attrib-
uted to cultivar for both indices (marginalized R*=0.41
and 0.58 for Shannon and Simpson, respectively). Nota-
bly, statistically significant differences were detected in
the baseline between control plots and those to which
biostimulants would be applied, with the control plots
displaying reduced eukaryotic and prokaryotic « diversity
(eukaryotic Shannon p-value=0.1, ME=-0.19; eukary-
otic Simpson p-value=0.05, ME=-0.001; prokaryotic
Shannon p-value=0.005, ME =-0.41; prokaryotic Simp-
son p-value=0.002, ME =-0.04).

While a diversity incorporates both richness and even-
ness, relying solely on composite diversity indices might
obscure their individual contributions to ecosystem func-
tion [109]. Pielou’s evenness was therefore employed to
quantify the count distribution across ASVs. The index
was consistent between fixed effect levels and domains,
with a mean of 0.91+0.007 for eukaryotes, 0.90+0.009
for prokaryotes, and no statistically significant trends
observed (Fig. 2A, C). This observation was supported
by a strong association between Chaol richness and
Shannon diversity (p=0.95, p-value=4.58e %) (Fig. 2B).
Eukaryotic evenness was influenced predominantly by
growth stage (marginalized R?=0.98), while no patterns
were present for the prokaryotic dataset. Consistent with
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Shannon and Simpson diversity, the baseline control
plots showed reduced prokaryotic evenness in compari-
son to biostimulant plots (p-value =0.0004, ME =-0.089).

Compositional dissimilarity was first assessed using
CSS-normalized counts from full-length, mapped ASVs.
The phylum-level composition was first visualized across
experimental conditions, revealing that the eukaryotic
rhizosphere microbiome was largely composed of Asco-
mycota and the prokaryotic microbiome dominated
by Proteobacteria (Fig. 3A, C). Dissimilarity matrices
were constructed subsequently leveraging Bray—Cur-
tis, Euclidean, and Jaccard distances, and compositional
trends were inferred between fixed effect levels with PER-
MANOVA and f dispersion estimation. Findings were
consistent across the matrices (Supplementary Table 1,
2, Additional file 2); therefore, representative ordinations
were generated with Bray—Curtis dissimilarity (Fig. 3B,
D). Notably, growth stage had the most significant impact
on eukaryotic microbiome composition (Bray—Curtis
PERMANOVA R?=0.08, F-value=2.0, p-value=0.0001)
(Fig. 3E; Supplementary Table 1, Additional file 2), yet
ANOVA suggested heterogeneous P dispersion across
growth stage levels (F-value=6.32, p-value=0.003) (Sup-
plementary Table 1, Additional file 2). Both PCoA and
NMDS ordinations implicated a strong spatial effect on
eukaryotic microbiome composition as well (Fig. 3B).
Prokaryotic microbiome composition showed neither
strong statistical nor qualitative trends, albeit a treat-
ment-growth stage interaction explained the highest
proportion of variance (Bray—Curtis PERMANOVA
R?=0.06, F-value=1.31, p-value=0.08) (Fig. 3D, F; Sup-
plementary Table 2, Additional file 2). Lastly, while no
compositional trends emerged from the baseline meas-
urements, [ dispersion did vary between treatment lev-
els for Euclidean dissimilarity (ANOVA F-value=4.48,
p-value=0.05) (Supplementary Fig. 2; Supplementary
Table 3, Additional file 2).

In like manner, Bray—Curtis dissimilarity matri-
ces were reconstructed with CSS-normalized counts
from complete datasets (both mapped and unmapped
ASVs), and compositional trends were assessed. Con-
sistent with the prior analysis, growth stage explained
the most variance in eukaryotic compositional dis-
similarity (PERMANOVA R?=0.05, F-value=1.10,
p-value=0.003), and B dispersion was not signifi-
cantly heterogeneous among effect levels (Supplemen-
tary Table 4, Additional file 2). In addition, treatment
had a statistically significant effect on composition
(PERMANOVA F-value=1.10, p-value=0.02), while
cultivar demonstrated a marginally significant effect
(PERMANOVA F-value=1.03, p-value=0.07) (Sup-
plementary Table 4, Additional file 2). Regarding
prokaryotic compositional dissimilarity, growth stage
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Fig. 3 Microbiome composition and 3 diversity. A Relative abundance of eukaryotic phyla for each experimental condition. B PCoA (top row)

and NMDS (bottom row) ordinations of eukaryotic Bray—Curtis dissimilarity. Compositional dissimilarity was calculated independently at ASV level
using Bray—Curtis, Euclidean, and Jaccard distances, each of which yielded results consistent with those presented. Point size reflects Shannon
diversity. C Relative abundance of prokaryotic phyla for each sample and experimental condition. D PCoA (top row) and NMDS (bottom row)
ordinations of prokaryotic Bray—Curtis dissimilarity. Point size reflects Shannon diversity. E Variance explained by treatment, cultivar, growth stage,
and interactions thereof on eukaryotic community composition as determined by PERMANOVA with Bray—Curtis dissimilarity. F Variance explained
for prokaryotic community composition. G Heatmap of ASVs most influential for pairwise dissimilarity between fixed effect levels. The lowest
taxonomic classification for each ASV is displayed below the corresponding column

explained the most variance (PERMANOVA R?>=0.05, interaction significantly influenced prokaryotic com-
F-value=1.19, p-value =0.02) rather than a treatment-  positional dissimilarity (PERMANOVA F-value=1.11,
growth stage interaction as observed with the reduced p-value=0.08) (Supplementary Table 4, Additional
dataset, yet demonstrated heterogeneous [ disper- file 2). No statistical significance was observed in base-
sion (F-value=3.25, p-value=0.05) (Supplementary line measurements of eukaryotic or prokaryotic B
Table 4, Additional file 2). The treatment-growth stage  diversity (Supplementary Table 5, Additional file 2).
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Complementary to PERMANOVA, the Bray-Curtis
indices derived from mapped ASVs were decomposed
with the Similarity Percentage method [71] to discern
ASVs most influential for pairwise similarity/dissimilarity
between fixed effect levels. The five ASVs to which dis-
similarity was most attributed were identified for each
comparison, and their lowest taxonomic classification
retrieved. Interestingly, Cyathus stercoreus and an Acre-
monium species were identified for all five fixed effect
comparisons with the eukaryotic Bray—Curtis matrix, fol-
lowed by a Nectria species and Phallus rugulosus in four
comparisons, and Neocosmospora falciformis in three.
Plectosphaerella cucumerina was exclusive to compari-
sons between vegetative and reproductive growth stages,
while Mortierella elongata and a Polymyxa species were
exclusive to R6 vs R2 (Fig. 3G). Likewise, ASVs corre-
sponding to Nitrosomonas europaea, Clostridium sporo-
genes, Bacteroides thetaiotaomicron, and Rhodospirillum
rubrum F11 were most influential for all fixed effect
comparisons of prokaryotic Bray—Curtis dissimilarity,
with Bifidobacterium adolescentis identified in four com-
parisons and Bradyrhizobium japonicum CCBAU 15618
exclusive to R6 vs R2 (Fig. 3G). Given the vast overlap of
these ASVs between pairwise comparisons, and that all
demonstrated statistical insignificance (p-value>0.05
based on 9,999 permutations), ASV identification more
likely reflected high abundance/variation across the
amplicon datasets than contribution to dissimilarity,
which is a common (yet often misinterpreted) element of
Similarity Percentage analysis [71].

Microbiota with agriculturally-relevant life strategies
exhibited distinct membership trends across fixed effect
levels
Core, unique, and differentially abundant taxa were
identified at genus and species levels for eukaryotes and
prokaryotes, respectively, across all growth stages (base-
line and those succeeding biostimulant application).
Unsurprisingly, 20/22 core taxa (defined as those with
a>0.5 prevalence across all samples) were eukaryotic
genera that mostly exhibit a partly aquatic, saprotrophic
lifestyle with filamentous mycelial growth and perithecial
fruiting bodies (Fig. 4A). Furthermore, 7/20 (35%) were
annotated as plant pathogens (Fig. 4A). The prokaryotic
core members included the nitrite-oxidizing bacterium
Nitrospira japonica [110] and the scarcely reported bac-
terium Pseudolabrys taiwanensis [111] (Fig. 4A).
Eukaryotic genera/prokaryotic species unique to a fixed
effect level encompassed a collective 217 taxa between
treatments (30 eukaryotes, 187 prokaryotes), 296
between cultivars (88 eukaryotes, 208 prokaryotes), and
260 between growth stages (74 prokaryotes, 186 eukar-
yotes) (Fig. 4B). Those unique to biostimulant-treated
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samples were all prokaryotes and included four species in
the symbiotic genus Bradyrhizobium [112], the additional
rhizobia Mesorhizobium ciceri, Mesorhizobium pluri-
farium, Rhizobium grahamii, and Rhizobium massiliae,
Pseudomonas fluorescens [113], three species of Bacil-
lus [114], and 10 Streptomyces species [115] (Fig. 4B).
Notable taxa exclusive to the control treatment were the
arbuscular mycorrhizal/root-associated genus Paraglo-
mus [116], six plant pathogens (including the soybean
disease-causing oomycete genus Phytophthora [117]),
and Bradyrhizobium stylosanthis (Fig. 4B).

Perhaps the most distinct trend was the exclusivity of
plant pathogens to a particular cultivar. Eight pathogens
were unique to CZ4979X (SDS-tolerant cultivar), includ-
ing Phytophthora and the soybean-parasitizing fungal
genus Septoria [118] (Fig. 4B). Other CZ4979X-specific
taxa were Bradyrhizobium algeriense, Bradyrhizobium
betae, Mesorhizobium plurifarium, Nitrospira multi-
formis [119], and Pseudomonas fluorescens (Fig. 4B).
Samples from CZ4810X, which presumably have height-
ened susceptibility to the soybean disease SDS in com-
parison to CZ4979X, had 15 plant pathogens not present
in CZ4979X samples, including the soybean disease-
causing genera Diaporthe [120], Macrophomina [121],
and Rhizoctonia [122] (Fig. 4B). Additional taxa unique
to CZ4810X included the genus Paraglomus, Bradyrhizo-
bium lupini, Bradyrhizobium stylosanthis, Mesorhizo-
bium ciceri, Rhizobium cellulosilyticum, and nine species
of Streptomyces.

Of the 260 taxa exclusive to a single growth stage, 48
were unique to V1 (18 eukaryotes, 30 prokaryotes),
68 to V6 (17 eukaryotes, 51 prokaryotes), 61 to R2 (22
eukaryotes, 39 prokaryotes), and 83 to R6 (17 eukary-
otes, 66 prokaryotes) (Fig. 4B). Those corresponding to
V1 included six plant pathogens (including Septoria),
Nitrospira multiformis, and Bradyrhizobium algeriense
(Fig. 4B). The V6 growth stage was characterized by three
distinct plant pathogens, Paraglomus, Bradyrhizobium
lupini, two Bacillus species, and nine Streptomyces spe-
cies (Fig. 4B). Similarly, R2 possessed five unique plant
pathogens (including Rhizoctonia), Bradyrhizobium
betae, Mesorhizobium plurifarium, and Rhizobium cel-
lulosilyticum (Fig. 4B). The final sampled growth stage
contained 5 unique plant pathogens (including Mac-
rophomina, Phytophthora, and Cercospora [123]), two
Bacillus species, Bradyrhizobium stylosanthis, and Pseu-
domonas fluorescens (Fig. 4B). A comprehensive list of
condition-specific taxa can be found in Additional file 5.

Differentially abundant taxa between fixed effect lev-
els were determined by fitting CSS-normalized counts
with a ZINB regression model. The greatest number of
those statistically enriched/depleted (g-value<0.25) was
observed between levels of treatment (22 eukaryotes, 19
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prokaryotes, total n=41), with 18 taxa being enriched
and 23 depleted in biostimulant vs control (Fig. 4C).
Notably, this included the differential abundance of
saprotrophic fungi, the depletion of five fungal patho-
gens, and the enrichment of Bradyrhizobium elkanii,
Bradyrhizobium japonicum, Bradyrhizobium lablabi, and
Mesorhizobium amorphae (Fig. 4C). The most depleted
taxa in biostimulant-treated samples were the poten-
tial human/foodborne pathogenic bacteria Clostridium
sporogenes and Escherichia coli [124, 125] (Fig. 4C).
Twenty-seven taxa (13 eukaryotes, 14 prokaryotes) were
differentially abundant between cultivars, 14 of which
were enriched and 13 depleted in CZ4979X vs CZ4810X
(Fig. 4C). Most of the identified eukaryotes displayed
marginal depletion in CZ4979X (including 3/4 differen-
tially abundant plant pathogens) (Fig. 4C). In contrast,
the majority of prokaryotes were enriched, including
the inorganic phosphate-solubilizing bacterium Bacillus
acidiceler [126), Bradyrhizobium elkanii, Bradyrhizobium
japonicum, and Escherichia coli (Fig. 4C).

As expected, an increase in differentially abundant taxa
was associated with the temporal distinctiveness of com-
pared growth stages. The greatest number was observed
in the R6 vs V1 comparison (distance=3 growth stages)
(23 eukaryotes, 15 prokaryotes, total n=238), followed by
R6 vs V6 (distance=2 growth stages) (16 eukaryotes, 13
prokaryotes, total #=29), R2 vs V1 (distance=2 growth
stages) (19 eukaryotes, 10 prokaryotes, total n=29),
V6 vs V1 (distance=1 growth stage) (14 eukaryotes, 13
prokaryotes, total n=27), R2 vs V6 (distance=1 growth
stage) (15 eukaryotes, 10 prokaryotes, total n=25), and
R6 vs R2 (distance=1 growth stage) (12 eukaryotes, 10
prokaryotes, total n=22) (Fig. 4C). The eukaryotic data-
set was defined by the enrichment of saprotrophic gen-
era Acremonium and Chaetomium with the progression
of time, which was particularly distinct between vegeta-
tive and reproductive growth, and a depletion in the sap-
rotrophic genus Conocybe (Fig. 4C). The reproductive
growth stages also displayed an overall enrichment in
Microbacterium rhizosphaerae, Bradyrhizobium elkanii,

(See figure on next page.)
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and Bradyrhizobium japonicum, although the latter was
depleted at all stages compared to V1 (Fig. 4C). To this
end, the V1 growth stage showed unique enrichment of
eukaryotic genera Ciliophora, Cyberlindnera, Podospora,
and Setophoma, of prokaryotic species Bradyrhizobium
japonicum and Pseudarthrobacter chlorophenolicus, and
a depletion in the genus Neocosmospora and species
Arthrobacter humicola, Bacillus megaterium, and Micro-
lunatus panaciterrae (Fig. 4C). Differentially abundant
taxa and associated metadata are provided in Additional
file 6.

A treatment-cultivar interaction defined genus-level
microbial co-occurrence network structure
Putative genus-genus associations were inferred with
Spearman and Pearson correlation methods. The asso-
ciations were determined from CSS-normalized absolute
abundances to mitigate the concomitant limitations of
compositionality bias and biases stemming from differ-
ential sampling efficiency of taxa [127, 128]. Moreover,
the p-values of pairwise associations were corrected for
multiple testing given the prevalence of Type I errors
during microbial co-occurrence network construction
[91]. Herein, the global Spearman co-occurrence network
comprised 826 edges (associations) and 188 nodes (gen-
era), all of which presented a low mean relative abun-
dance (<0.5%) across the dataset (Fig. 5A, C). The global
Pearson network possessed 1007 edges and 294 nodes,
with evident variability in mean relative abundance
observed (Fig. 5B, C). In addition, 462/1,371 (33.7%) of
the edges were shared between the networks (Fig. 5C).
Condition-specific co-occurrence networks, defined
by treatment-cultivar-growth stage combinations, were
constructed with Spearman and Pearson associations as
outlined for global networks. The Spearman networks
presented an increase in network density with time
(vegetative node n=11.13+2.54, edge n=16.38+4.88;
reproductive node n=22.88 +1.51, edge n=37.50+4.27),
and a potential treatment effect at the V6 growth stage
(control node n=5.0+ 1.0, edge n=6; biostimulant node

Fig. 5 Global and condition-specific co-occurrence network analysis. A Global genus-level co-occurrence network constructed by obtaining
significant positive and negative pairwise Spearman associations (Rho> +0.6, g-value < 0.05). B Global genus-level co-occurrence network
constructed by obtaining significant positive and negative Pearson associations. C Venn diagram of unique and overlapping co-occurrences
between Spearman and Pearson global networks. D Condition-specific networks constructed with significant Spearman associations. E
Condition-specific networks constructed with significant Pearson associations. F Spearman associations between network density (edge count

and node count) and topological features for each set of condition-specific networks. Both x and y axes represent log;, values. G Venn diagram

of unique and overlapping co-occurrences between Spearman and Pearson condition-specific networks. (H) Heatmap of Pearson/Spearman
condition-specific network nodes. Node color represents Kleinberg hub centrality, with blue reflecting a network member (hub score <0.2) and tan/
red reflecting a network hub (hub score >0.2). The top annotation represents the number of networks in which a node is a network member (blue)
or hub (red). The right annotation shows the number of genera in each condition-specific network and is partitioned by domain (eukaryotes are

purple and prokaryotes are green)
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n=21.0+2.0, edge n=35.50+1.50) (Fig. 5D; Table 1).
Given the density of the biostimulant-CZ4979X-V1 net-
work (node n=16, edge n=27), which is the baseline
sampling preceding biostimulant application, the varia-
tion observed at V6 may better reflect a treatment-cul-
tivar interaction between biostimulant and CZ4810X
(Fig. 5D; Table 1). In support of this notion, the great-
est trend in Pearson network density was observed
in biostimulant-CZ4810X networks at growth stages
succeeding biostimulant application (control node
n=99.0+14.42, edge n=612.33+86.81; biostimulant
node n=136.0+4.58, edge n=1,533.67+67.85) (Fig. 5E;
Table 2). Pearson networks were overall denser than
Spearman networks (Spearman node n=17.0+2.08, edge
n=26.94+4.15; Pearson node n=107.63+4.78, edge
n=791.50+99.20), which was consistent with the global
co-occurrence networks, and 257/10,665 (2.41%) of edges
were shared between the association methods (Fig. 5E,
G).

Condition-specific network topology was further
defined by centralization degree (the extent to which
a single node “controls” a network), cluster count (the
number of separate, interconnected groups), connectance
(the proportion of all possible links that are actual con-
nections), giant component size (the size of the largest
connected subgraph), hub count (the number of nodes
with a Kleinberg hub centrality score>0.2), KS test sta-
tistic (how closely degree distribution adheres to a scale-
free topology), mean node degree (the average number of
connections per node), and modularity (the strength of
division into distinct modules/communities) (Tables 1,
2). Of these, centralization degree, cluster count, giant
component size, mean degree, and modularity dem-
onstrated a statistically significant, positive association
(Spearman’s p statistic >0, p-value <0.05) with both edge
count and node count across Spearman networks, while
connectance presented a negative association (Fig. 5F;
Table 1). The KS test statistic was negatively associated
with edge count (Fig. 5F; Table 1). Conversely, only hub
count and mean degree presented significant associations
with Pearson network node count (both of which were
positive), and centralization degree, connectance, hub
count, mean degree, and modularity were associated with
edge count (all positive associations except modularity)
(Fig. 5F; Table 2). The discrepancy in network topology
was reflected in the ranking of co-occurrence networks,
as eight of the 10 metrics showed statistically significant
differences in conditional ranking between the associa-
tion methods (Friedman rank sum test p <0.05) (Supple-
mentary Fig. 3B, Additional file 2). Despite this, all nodes
represented in Spearman networks were present in Pear-
son networks (Supplementary Fig. 3A, Additional file 2),
and the hierarchical clustering of Pearson networks by
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node centrality score supported the overarching trend
of treatment-cultivar interaction defining co-occurrence
network structure (Fig. 5H).

Edaphic property dynamism and integration

within phenotype-taxon networks

To contextualize microbiome dynamics, 24 edaphic
parameters were measured for each soil sample, and dif-
ferences between fixed effect levels and their interactions
were determined using GLMMs. Of these, 18 parameters
displayed significant variation (p <0.05) between levels of
one or more explanatory variables, with soil K and SOM
affected most (n=5). These were followed by ARS, B,
Ca, and P (n=3), and ALP, Ca/Mg, CEC, Fe, K/Mg, Na,
and NO;- (n=2). The parameters GBA3, Mg, NAG, S,
and soil pH each displayed variation between levels of a
single explanatory variable (Fig. 6A). Inversely, cultivar
explained observed variation for 14 edaphic parameters,
12 of which were increased in CZ4979X vs CZ4810X
(Fig. 6A). Ten parameters were increased in V6 vs R2,
and six differed significantly in the R6 vs R2 comparison
(two increased and four decreased) (Fig. 6A). The explan-
atory variables treatment, treatment-cultivar interaction,
and cultivar-growth stage interaction each explained
observed variation in a lesser number of edaphic parame-
ters (Fig. 6A). Furthermore, rank-based measures of asso-
ciation were inferred between edaphic parameters with
Spearman’s p statistic, rendering 109 significant associa-
tions (positive n=73, negative n=36) (Fig. 6B). Of these,
the Ca/Mg ratio presented the most significant asso-
ciations of the parameters (positive n=6, negative n=9;
total n=15) (Fig. 6B).

Significant microbial associations spanning one or both
global networks were coupled with edaphic data to con-
struct phenotype-taxon networks. Briefly, lasso regres-
sion was used to identify taxa putatively associated with
each edaphic parameter given its propensity to assign
coefficient penalties in instances when sample size is
small relative to feature (node) count [89, 129]. A reduced
GLM was deployed thereafter to provide directional-
ity to phenotype-node associations and was overlaid
with the global microbial association dataset to derive
final networks. The phenotype-taxon networks com-
prised 285.63+1.98 nodes (eukaryotic n=165.71+1.70,
prokaryotic n=119.92+0.31) and 1,417.46 + 24.33 edges,
and a collective 306 nodes (183 eukaryotes, 123 prokary-
otes) were represented in at least one network (Fig. 6C,
D). Given the inherent zero inflation in taxon abundance
(Fig. 6E), node prioritization was preceded by filtering to
those with a>0.2 prevalence. A composite score was then
computed with modularity measures and Kleinberg’s hub
centrality (see “Materials and Methods”), and the top 20
nodes by mean composite score were extracted. These
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Fig. 6 Phenotype-taxon networks for edaphic parameters. A Mean estimates for edaphic measure GLMMs. Point size corresponds to hierarchically
partitioned R? values. B Pairwise Spearman associations for edaphic measures. C Genus-level phenotype-taxon networks constructed by coupling
lasso regression, reduced GLMs, and co-occurrences (all significant Spearman and Pearson associations). D Heatmap of node composite score
(calculated with normalized modularity measures and Kleinberg's hub centrality) for each phenotype-taxon network. The top annotation represents
mean composite score across all networks. The right annotation shows the number of nodes in each phenotype-taxon network and is partitioned
by domain (eukaryotes are purple and prokaryotes are green). E Relative abundance of nodes in phenotype-taxon networks. The top annotation
represents the mean composite score. F Pairwise Spearman associations for the top 20 nodes with respect to mean composite score. G Pairwise
Spearman associations for the top 20 nodes and edaphic measures.p<0.1, *p <0.05, **p <0.01, **p < 0.001

nodes included 17 eukaryotic genera that are predomi-
nantly aquatic/partly aquatic with mycelial growth and
a saprotrophic lifestyle, as well as the prokaryotic gen-
era Bradyrhizobium, Lysobacter, and Mycobacterium
(Fig. 6F, G). Six of the 20 (30%) were represented in the

core microbiome. In addition, seven (35%) of the selected
eukaryotic genera were annotated as plant pathogens.
Rank-based measures of association were determined
thereafter between prioritized nodes, as well as between
nodes and edaphic phenotypes. Thirty node-node
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associations were significant (positive n=22, negative
n=38), with the greatest number of those encompassing
the pathogenic/saprotrophic genus Fusarium (positive
n=6, negative n=1, total n=7) and the saprotrophic
genus Neocosmospora (positive n=>5, negative n=2, total
n=7) (Fig. 6F). The node-phenotype analysis rendered 90
significant associations (positive n=34, negative n=56),
with the most represented nodes being the pathogenic
Apiospora (positive n=6, negative n=>5, total n=11) and
the saprotrophic Phallus (positive n=4, negative n=7,
total n=11), and the most represented phenotypes being
B (positive n=1, negative n=6, total n=7) and Buffer pH
(positive n=3, negative n=4, total n="7) (Fig. 6G).

Agronomic property dynamism and integration

within phenotype-taxon networks

At the R8 growth stage, the agronomic parameters 100-
seed weight, aboveground biomass, belowground bio-
mass, pods/plant, and theoretical yield were determined
for each of the 16 plots. Variations between levels of
treatment, cultivar, and their interaction were then deter-
mined using GLMMs. Biostimulant-treated plots had
significantly increased 100-seed weight (p-value=0.05,
ME=0.83), and a marginal decrease was observed in
CZ4979X vs CZ4810X (p-value=0.08, ME=-0.73)
(Fig. 7A, B). Expectedly, consistent directional changes
were present for theoretical yield, with biostimulant
demonstrating a marginal increase (p-value=0.09,
ME =464.66) over the control, and CZ4979X being
decreased in comparison to CZ4979X (albeit insignifi-
cantly) (Fig. 7A, B). Above- and belowground biomass
showed opposing trends between cultivars, being statisti-
cally increased (p-value=0.002, ME=3.66) and insignifi-
cantly decreased, respectively, in CZ4979X vs CZ4810X
(Fig. 7A, B). Both parameters were increased insig-
nificantly in biostimulant vs control (Fig. 7A, B). Lastly,
pods/plant was increased significantly in CZ4979X vs
CZ4810X (p-value=0.02, ME=14.23) and increased
insignificantly in biostimulant vs control (Fig. 7A, B).
The cultivar explained the highest proportion of variance
for aboveground biomass and pods/plant (marginalized
R?=0.85 and 0.71, respectively), while variance in 100-
seed weight, belowground biomass, and theoretical yield
were best explained by treatment (marginalized R?=0.56,
1.0, and 0.95, respectively).

Phenotype-taxon networks were constructed and visu-
alized as described for edaphic parameters, encompassing
128 +6.66 nodes (eukaryotic n="75.20 + 5.64, prokaryotic
n=52.80+1.56) and 448.20+35.11 edges (Fig. 7C-E).
Furthermore, 148 nodes (89 eukaryotes, 59 prokaryotes)
were present in one or more of the networks (Fig. 7C, D).
Consistent with the previous analysis, node prioritization
identified 17 eukaryotic genera that are predominantly
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aquatic/partly aquatic with mycelial growth and a sap-
rotrophic lifestyle, seven of which are also annotated
as plant pathogens (Fig. 7F, G). The remaining genera
included the prokaryotes Bradyrhizobium, Burkholderia,
and Lysobacter (Fig. 7F, G). Six of the 20 were represented
in the core microbiome. In addition, 10 (50%) nodes were
prioritized for both agronomic and edaphic networks.
Rank-based measures of association were next inferred
between the top 20 nodes and between nodes and agro-
nomic parameters. There were 35 significant associa-
tions between nodes (positive n =31, negative n=4), and
Neocosmospora was most represented (positive n=38,
negative n=1, total n=9) (Fig. 7F). Additionally, six sig-
nificant associations were discerned between nodes and
parameters, with four nodes positively associated with
aboveground biomass (Naegleria, Setophoma, Neonec-
tria, and Fusariella), Leptosphaeria positively associated
with pods/plant, and Phaeosphaeriopsis associated nega-
tively with theoretical yield (Fig. 7G).

Discussion

Soil is the most biodiverse habitat on Earth, harboring an
estimated 59% of all living organisms [130]. Yet, relatively
little is known about the inhabitants of this dynamic
ecosystem, their interaction, their collective influence
on environmental (and thereby human) health, and the
interplay of stochastic and deterministic processes shap-
ing such communities [131-133]. Single-molecule-based
sequencing stands at the forefront of technologies pre-
dicted to clarify these ambiguities inherent in complex
microbial systems [134]. To this end, the current study
paired the commercial LoopSeq SLR platform with avid-
ity sequencing to profile both eukaryotic and prokaryotic
fractions of the soybean rhizosphere microbiome. An
in situ experimental design reflected potential environ-
mental dependencies in microbiome structure, which
are likely missed in greenhouse/growth chamber experi-
ments [135, 136], yet remain indispensable for practical
application of derived inferences [137]. Multiple growth
stages, commercial cultivars (genotypes), and biostimu-
lants were also incorporated given their reported effect
on rhizosphere microbiome assembly in soybean [13, 17,
18] and other plant systems [138—140]. The aim of this
approach was to generate a well-resolved depiction of
soybean rhizosphere microbiome structure and composi-
tion, laying groundwork for future applications in micro-
biome-based agriculture.

Perhaps the most significant outcome of this study
was the taxonomic resolution achieved with both 16S
and 18S-ITS SLRs. Traditional short-read amplicon
sequencing rarely classifies ASVs beyond genus level,
constraining biological inference [29]. For instance, Sug-
iyama et al. [141] suggested that soybean demonstrates
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species- and even strain-level selection of Bradyrhizo-
bia based upon stark abundance patterns of ASVs/
OTUs with Bradyrhizobium annotation; yet, this notion
could not be verified given the limited resolution dis-
cerned with pyrosequencing. In the present work, assem-
bling all 9 hypervariable regions of the 16S rRNA gene
assigned prokaryotes to at least species level, with nearly

one-fourth of mapped, full-length ASVs obtaining strain-
level classification. This included the identification of 13
Bradyrhizobium species, some of which demonstrated
exclusivity and/or differential abundance (i.e., putative
selection) across experimental conditions. Furthermore,
a subset of ASVs corresponding to Bradyrhizobium elka-
nii and Bradyrhizobium japonicum (genus members with
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the greatest absolute abundance) were resolved at strain
level (one and four strains, respectively). This result fur-
ther coincides with prior studies wherein Bradyrhizo-
bium elkanii and Bradyrhizobium japonicum were the
predominant species to nodulate soybean [142].

In eukaryotic microbial community analysis, the de
novo-assembled 18S-ITS1-ITS2 molecules facilitated
genus-level taxonomic assignment for all mapped ASVs,
and species level assignment for approximately 45%. This
strategy effectively captured diverse fungal taxa with
agricultural importance, such as soybean-parasitizing
genera. Beyond fungi, the analysis identified five king-
doms encompassing 19 genera of protists, including Phy-
tophthora and Pythium [143]. Assessing soil-dwelling
prokaryotic, fungal, and protist communities in tandem
bears significance given that general primers do not exist
for short-read amplicon profiling of protists [19, 144]
and the understated yet significant role of protists in
the soil microbiome [145]. Furthermore, the resolution
achieved here permitted the automated retrieval of tax-
onomy-based functional annotations, allowing for highly
reproducible biological inference without the need for
sequence-based functional prediction.

Measures of a and [ diversity suggested an overarch-
ing temporal effect on microbiome structure and compo-
sition, with more subtle trends attributed to treatment,
cultivar, and fixed effect interaction. These findings were
consistent with Moroenyane et al. [146], wherein spatial
and temporal dynamics were key modulators of a and f
diversity in the soybean rhizosphere microbiome. Fur-
ther, a diversity aligned explicitly with the work of Long-
ley et al. [13]. In both studies, eukaryotic and prokaryotic
richness were decreased at the R2 growth stage and
increased by R6 [13]. Shannon diversity trends matched
the no-till soil findings of Longley et al. [13], showing
reduced eukaryotic diversity at R6 compared to R2, with
prokaryotes exhibiting the inverse trend. The authors
of the compared study noted that their results deviated
from prior research, postulating that management could
account for the discrepancy [13]. In this regard, the
accordance between the current and prior work may be
attributed to the absence of tillage in both experimental
designs. Agreeance may also reflect growth stage selec-
tion, as bacterial diversity in the soybean rhizosphere has
been evidenced to increase between R1 and R5 and then
decrease from R5 to R8 [147]. Moreover, the sole use of
full-length contigs for analysis may have impacted diver-
sity estimates, potentially excluding shorter sequences
that contribute to overall a and P diversity.

Consistent with previous studies, the eukaryotic
microbiome composition was predominantly Ascomy-
cota [9, 13], while the prokaryotic fraction was largely
represented by Proteobacteria [9, 18], as evidenced by
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taxonomic classification of mapped ASVs. The p diversity
patterns echoed findings from Moroenyane et al. [146] in
which growth stage (and interactions comprised thereof)
best explained compositional dissimilarity, yet also dis-
played significant heterogeneous dispersion, across both
eukaryotic and prokaryotic communities. In the cur-
rent study, a spatial effect was evident in the eukaryotic
microbiome composition, with samples clustering by
field location. Given the experimental setup replicated a
conventional row crop system, this may reflect an "edge-
of-field" effect, with plots near turnrows receiving varied
moisture or amendment applications. Comparable find-
ings were reported by Longley et al. [13] wherein man-
agement strategy (i.e., conventional, no-till, organic)
rendered distinct clustering of eukaryotic rhizosphere
communities, with such trends absent for prokaryotic
communities [13]. Notably, heterogeneity arising from
field location was controlled statistically in all analyses.

Community membership revealed core, unique, and
differentially abundant taxa across fixed effect levels. The
core microbiome is a crucial element for rhizosphere
microbiome assembly and consequent plant growth pro-
motion [148, 149]. Thus, it is unsurprising that the core
microbiome in this study was enriched with saprotrophic
fungi, which decompose organic matter, contribute to
nutrient cycling, and support soil structure [150]. Unique
taxon identification reinforced the supposition of Sugiy-
ama et al. [141] that Bradyrhizobia are subject to species-
level selection, and implicated strong host selectivity of
parasites/pathogens and mutualists. With regard to the
latter, numerous plant pathogens were exclusive to the
rhizosphere of the SDS-susceptible soybean cultivar, par-
ticularly at later growth stages. This could be attributed
to compromised defense mechanisms of the susceptible
cultivar, allowing opportunistic pathogens to colonize
and proliferate, or possibly due to specific root exu-
dates from this cultivar that inadvertently promote the
growth of these pathogens. The exclusivity of Streptomy-
ces panaciradicis, Pseudomonas fluorescens, and Strepto-
myces griseoplanus in the SDS-tolerant rhizosphere may
also reflect host selection, as the two former have been
leveraged as biocontrol agents against Fusarium patho-
gens [151, 152] and the latter as a biocontrol agent against
Macrophomina [153]. The Pseudomonas genus has also
been associated with SDS-suppressive soils spanning 45
soybean fields [10]. Lastly, the enrichment of Bradyrhizo-
bia in CZ4979X vs CZ4810X and in Biostimulant vs
Control further supports the exclusivity of Pseudomonas
fluorescens, which is well-evidenced to interact synergis-
tically with Bradyrhizobium japonicum [154, 155]. These
microbial dynamics in the soybean rhizosphere highlight
potential avenues for targeted crop protection, improved
soil health, and optimized disease-resistant breeding.
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Putative co-occurrences between prokaryotic, fungal,
and protist genera were determined using Spearman
and Pearson association methods. The Pearson networks
exhibited greater complexity and more pronounced
variability in node relative abundance compared to the
Spearman networks. This disparity could be influenced
by Spearman’s method of assigning similar rank values
to taxa with minimal or zero abundances, leading to sim-
pler network structure and a reduced representation of
high-abundance taxa [156]. Conversely, Pearson’s sen-
sitivity to actual data magnitudes may amplify the pres-
ence of notably abundant taxa, resulting in networks with
a broader range of densities and node abundances [156].
Nonetheless, the dominant effect of treatment-cultivar
interaction on condition-specific network structure was
persistent across the association methods. In like manner,
Liu et al. [18] noted a subtle genotype effect on soybean
rhizosphere microbial co-occurrence network structure.
Due to the reported effects of biostimulant application
on soybean agronomic performance [157] and microbial
network structure in other environments [158], it is also
logical to presume its influence on network structure in
the present work. Still, one must consider such findings
as preliminary, given the shortcomings in inferring eco-
logical interaction from co-occurrence [159] and that
mapped ASVs were used exclusively for co-occurrence
network construction, the latter of which could influence
network structure and node prioritization. It is therefore
recommended to complement network analysis with
additional measurements for more robust hypothesis-
driven research [160].

In this manner, 24 edaphic measurements were col-
lected for each soil sample, evaluated with GLMMs and
rank-based associations, and incorporated into pheno-
type-taxon networks. Soil organic matter (SOM) was
among the most dynamic parameters assessed, displaying
significant variation between five fixed effect level com-
parisons. This may reflect robust organic macromolecule
depolymerization given the observed enrichment of sap-
rotrophs in the eukaryotic rhizosphere microbiome [161]
and Proteobacteria in the prokaryotic fraction [162], and
perhaps coincides with the establishment of nodulation
[163]. The edaphic data were used independently to con-
struct phenotype-taxon networks based on the frame-
work of Poudel et al. [89]. A more exhaustive approach
was used to prioritize nodes by modularity and centrality,
accentuating microbial taxa with both module-specific
and network-wide influence. As expected, the prioritized
nodes for edaphic networks were mostly saprotrophic
eukaryotes. Moreover, the core rhizosphere microbiome
has been shown to interact with more transient taxa via
competition and cooperation, being central for microbial
network structure and functional stability [149, 164]. In
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line with this, nearly one-third of the prioritized nodes
for edaphic networks were members of the core microbi-
ome. Other identified nodes reinforced trends in edaphic
measures (e.g., the p-Proteobacteria genus Burkholde-
ria and the o-Proteobacteria genus Bradyrhizobium are
prominent lignin decomposers that can nodulate soy-
bean [162, 165]).

The microbiome dataset was further contextualized by
taking agronomic measurements at the end of the grow-
ing season. The most apparent trend was that biostimu-
lant application increased every measured trait, with
variation in 100-seed weight and theoretical yield being
statistically significant. Additionally, the SDS-susceptible
variety had heightened 100-seed weight and theoretical
yield in comparison to the tolerant cultivar despite having
reduced pods/plant, aboveground biomass, and increased
pathogens in the rhizosphere, implicating a putative fit-
ness cost associated with genetic resistance/tolerance
in the absence of disease [166]. Notably, each replicate
for 100-seed weight and theoretical yield encompassed
approximately 40 plants in a manner aligned with yield
plot trials. Network analysis and node prioritization were
consistent with that for edaphic properties, highlighting
saprotrophic eukaryotes, SOM-decomposing/nitrogen-
fixing bacteria, and members of the core microbiome. As
evidenced, complementing co-occurrence networks with
phenotypic data provides improved ecological context
that can guide the practical application of derived infer-
ences (e.g., through the design and implementation of
synthetic microbial communities) [89].

Conclusions

The defined study provides a taxonomically resolved view
of the soybean rhizosphere microbiome. Unique in its
design, this research was carried out in situ, circumvent-
ing the often-observed discrepancy where taxa linked
to host fitness in controlled settings fail to replicate
symbiont status under field conditions [136]. This study
revealed that both eukaryotic and prokaryotic rhizos-
phere microbiomes display structural and compositional
variation in response to treatment, cultivar, and growth
stage, consistent with earlier studies primarily leverag-
ing short-read sequencing. Furthermore, the novelty of
the present work was well-accentuated through com-
munity membership analysis, where taxonomic resolu-
tion permitted taxonomy-based functional annotation,
identifying an ecologically relevant, saprotroph-rich core
microbiome and demonstrating empirical evidence for
host selection of mutualistic taxa and concomitant path-
ogen restriction. The use of multiple association meth-
ods for microbial co-occurrence network construction
and the comprehensive assessment of network topology
underscored the influence of experimental conditions
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(biostimulant application and cultivar) on co-occurrence
network structure. Moreover, the augmentation of such
networks with edaphic and agronomic data, comple-
mented by regularized linear regression and a novel
node prioritization criterion, identified microbial genera
which may be leveraged for sustainable agriculture, many
of which are known for their ecological significance. In
conclusion, the application of synthetic long-read tech-
nology and an in situ experimental design yielded an
unparalleled understanding of the soybean rhizosphere
microbiome, signifying a considerable advancement in
crop microbiome research with practical implications for
microbiome-based agriculture.
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