Group C1.03 – Rust Busters

Clay Kinsey, Mckenna Maeker, William Plunket, Gage Royer

Dr. Felipe Gutierrez & STV

Background

Regional growth in Central Texas has increased the demand on water supply systems. Many providers such as Bobcat City seek new sources to supplement existing systems. Bobcat City has recently obtained rights to groundwater from a local aquifer and requests help designing a portion of a treatment plant capable of providing 40MGD.

This project aims to address the primary problem associated with this new groundwater source, high concentrations of iron (6-10 mg/L) and manganese (0.1-0.3 mg/L). This project focuses on evaluating potential alternatives to achieve aesthetic secondary treatment standards and attempt to match water quality characteristics of Bobcat City's existing supplies.

Three phases of the treatment process were identified and evaluated for capital & life-cycle costs as well as sustainability using ISI's Envision Sustainable Infrastructure framework.

Alternatives Analysis

Phase 1 – Mixing & Oxidation

Oxidation Alternative Options (requires pilot testing)

- A. Chlorine
- B. Potassium Permanganate

Mixing Alternative Options:

- A. Mechanical rapid (flash) mix basins
- B. In-line / static mixers

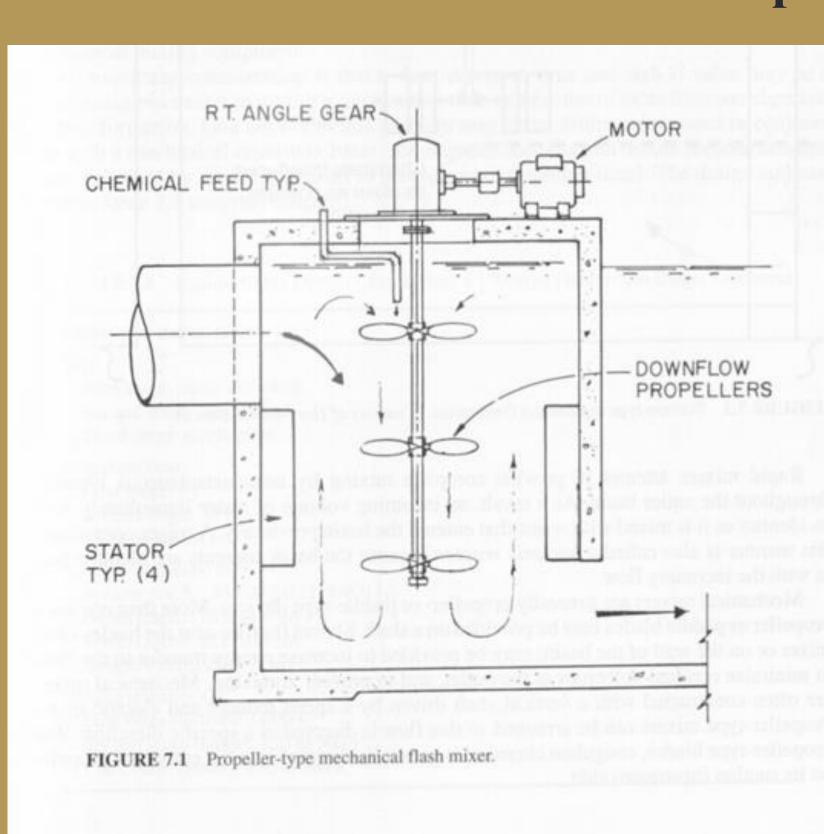
Phase 2 – Coagulation & Flocculation

Mechanical Flocculation Alternatives:

- A. Horizontal / Vertical Paddles
- B. Use Phase 3 solids-contact clarifiers for flocculation

Primary Coagulant Alternatives:

- A. Fe(III) salts introduced as chlorides or sulfates
- B. Pre-hydrolyzed alum (PACI) and polymers


Phase 3 – Sedimentation & Clarification

- A. Solids-contact Clarifiers / Slurry Recirculation
- B. Plate (lamella) Settlers

3 Phase Treatment Train Recommendations

Phase 1 – Mixing & Oxidation

Oxidation Recommendation: Future pilot testing required for matching compatibility Mixing Recommendation: Mechanical Rapid Mixing Basins

Motor, TEFC,
class F insulation
460 V, 3 hp, 60 Hz,
1.15 service factor

Gear reducer

Rigid coupling

Impeller shaft

Liquid level

Impeller shaft

Chemicals introduced as close as possible to this point

FIGURE 7.2 Turbine-type mechanical flash mixer. (Courtesy of Dorr-Oliver Elmco)

Figure 1: Impeller Type Flash Mixer (ASCE, 2022)

Figure 2: Turbine Type Flash Mixer (ASCE, 2022)

Phase 2 – Coagulation

Coagulation Recommendation: Pre-hydrolyzed alum (PACI) and assisting polymers Flocculation Recommendation: Rely on Phase 3 Solids-contact clarifiers for flocculation

Phase 3 – Sedimentation & Clarification

Recommendation: Solids-contact Rotating Clarifiers

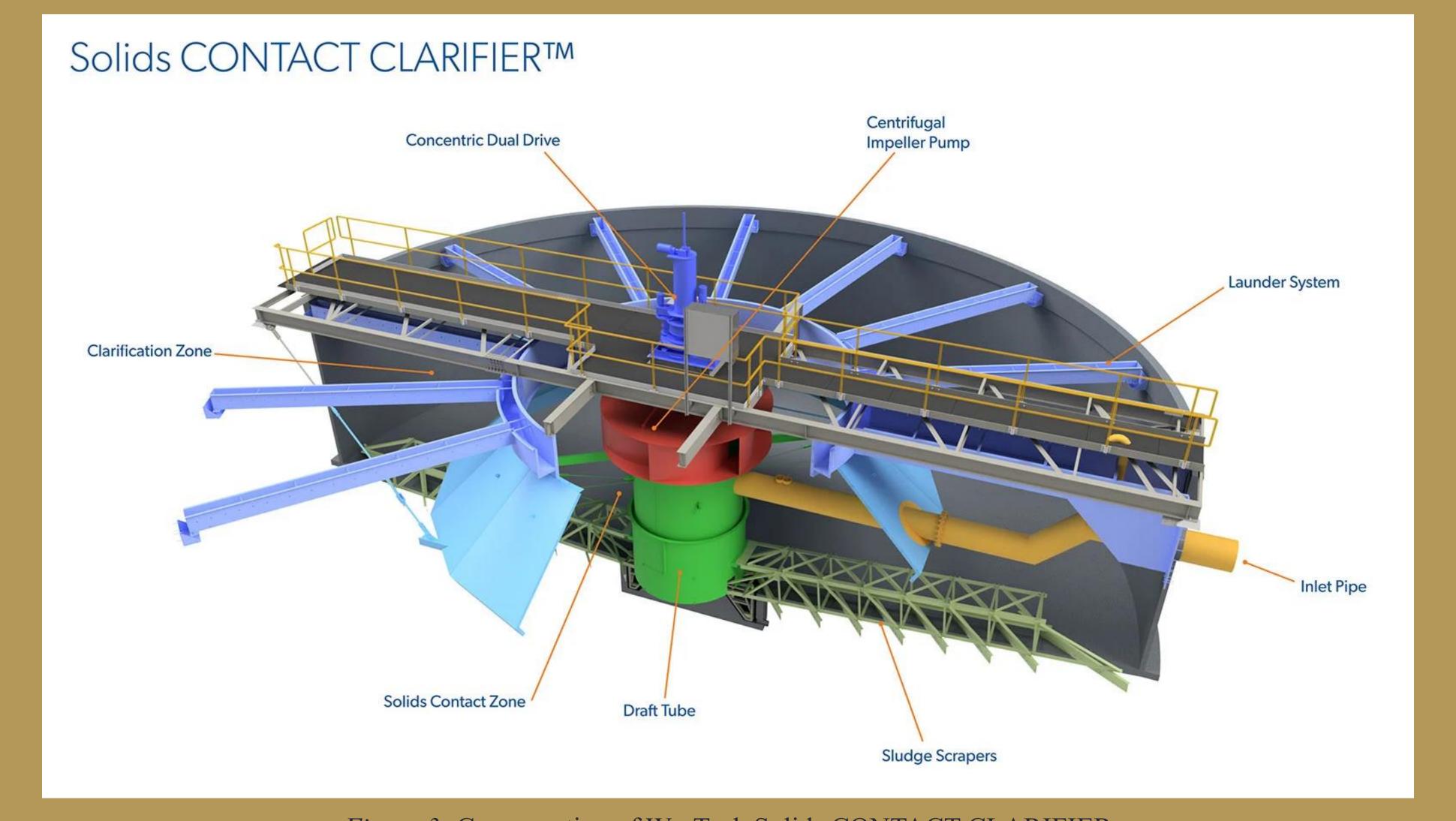


Figure 3: Cross-section of WesTech Solids CONTACT CLARIFIER

Costs & Sustainability

	Table 1: ISI Envision Su	stainability F	ramework S	ummary	
		Applicable	Submitted	Percentage	
8	Quality of Life	92	30	33%	
	Well Being / Mobility / Community				
	Leadership	182	77	43%	
	Collaboration / Planning / Economy				
(2)	Resource Allocation	196	95	48%	
	Materials / Energy / Water				
(4)	Natural World	114	41	36%	
W	Siting / Conservation / Ecology				
	Climate & Resilience	146	48	33%	
	Emissions / Resilience				
	Totals	730	291	40%	

Table 2: Capital & Life-cycle Costs Summary

Phase / Alternative	Total Capital Cost Estimate	Total 30-yr Life-Cycle Cost (NPV) Estimate			
Phase 1 Flash-Mix Tanks w/ Mechanical Agitators (4 basins)	\$0.45M – \$1.25M	\$0.75M – \$1.85M			
Phase 2 Pre-hydrolyzed Alum + Polymer Feed Systems	≈ \$1.40M	≈ \$2.75M			
Phase 3 Solids-Contact Clarifiers (3 circular basins)	\$1.25M – \$2.0M	≈ \$5.65M			
TOTAL (Phases 1–3)	\$3.0M – \$4.75M	≈ \$9.0M – \$10.25M			

Location & References

Figure 4: Bobcat City's Future Water Treatment Location

Bobcat City's new water treatment is planned to be built near the existing wastewater treatment plant near the Bobcat City River. Sustainability and construction considerations will take these proximities into account.

References

- American Water Works Association, & American Society of Civil Engineers. (2022). Water treatment plant design (6th ed.). McGraw-Hill Education.
- Google. (2025). *Google Maps* [Mapping application]. https://maps.google.com
 Institute for Sustainable Infrastructure. (2024). *Envision framework guidance manual*
- (Version 3). https://sustainableinfrastructure.org/envision/
 WesTech Engineering. (2025). Water treatment solutions and equipment.
- https://www.westech-inc.com