TEXAS STATE UNIVERSITY. Ingram School of Engineering

Project Overview

sedimentation basin system for a 40

Construction of a groundwater

MGD water treatment system.

Sedimentation basin system is to be

focused on the removal of current

contaminants as well as increase

match current San Marcos water

sources.

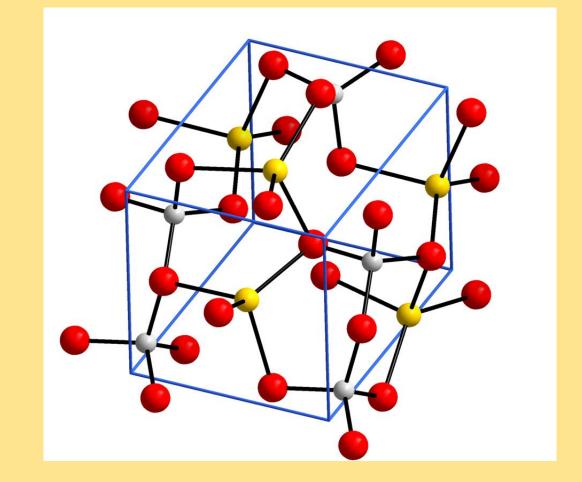
Overarching Issues:

found in the water.

calcium hardness and alkalinity to

Group C1.02 – Sedimentation Basin Design

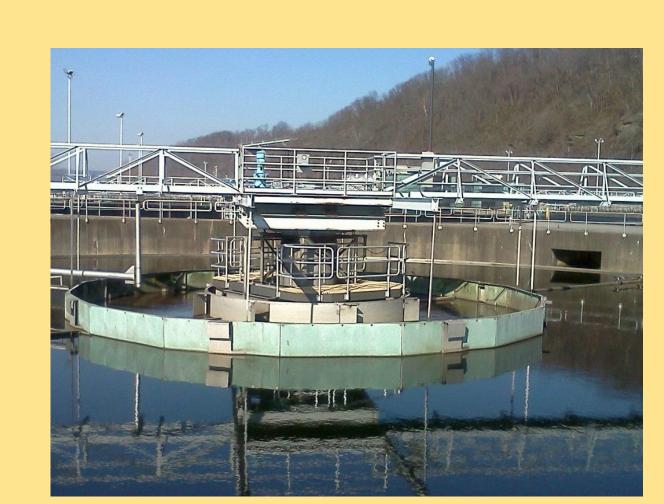
Patrick Figueroa, Drew Simmonds, Orlando Torres, and Diego Aguilar


Sponsored By: STV, Felipe Gutierrez, and Keisuke Ikehata

Alternatives Considered

Two alternative sedimentation basin systems were chosen for analysis in this project. These alternatives are each broken up into four smaller 10 MGD systems for each component. Descriptions of each step in both alternatives can be seen below in descending order from top to bottom.

Alternative 1:


- Multiple-tray aeration
- Propellor-type rapid mixing
- Sodium aluminate coagulant added into mixing basins
- Inclined plate settler system
- Sand filtration

Atomic Structure of Sodium Aluminate (Image from "Andif1" on Wikimedia Commons)

Alternative 2:

- Propellor-type rapid mixing
- Lime coagulant added into mixing basins
- Clarifier tanks for sediment removal and oxidation
- Inclined plate settler system
- Sand filtration

Clarifier Tank (Image from "90.5 WESA" on

Constraints & Standards

Current groundwater calcium and

alkalinity values are too low.

Figure 1. Aerial view of the proposed treatment plant site

Major surplus of Iron & Manganese

Table 1. Raw Groundwater vs. San Marcos Water

Parameter	Groundwater	San Marcos
Iron (mg/L)	6 average 10 maximum	<0.1
Manganese (mg/L)	0.1 average 0.3 maximum	<0.005
pH	6	7.8
TDS (mg/L)	190	350
Alkalinity (mg/L as CaCO ₃)	20	220
Calcium (mg/L as CaCO ₃)	30	200

This table was given to us as a water quality guideline to be focused on for the water treatment of the given raw groundwater.

- Alternatives adhere closely to Texas Administrative Code 290.
- TCEQ regulations were closely followed during the design process for sedimentation basins.
- Primary and secondary MCLs followed from EPA for design considerations.

Capital Costs

Table 2. Alternative 1 Capital Costs

COST CATEGORY	Initial Cost	
	(2025 \$)	
Civil / Structural (basins, buildings)	\$ 10,000,000	
Multiple-tray aerators (4)	\$ 3,200,000	
Propeller rapid-mixers + VFDs (4)	\$ 276,000	
Sodium aluminate dosing system	\$ 1,100,000	
Lamella settler packs (4)	\$ 3,200,000	
Dual-media filters (4) + underdrains	\$ 24,000,000	
Backwash & air-scour blowers	\$ 1,600,000	
Instrumentation & SCADA	\$ 3,800,000	
Electrical / MCC / transformers	\$ 6,200,000	
Painting & coatings	\$ 1,200,000	
SUBTOTAL ESTIMATED CAPITAL	\$ 54,576,000	

Table 3. Alternative 2 Capital Costs

COST CATEGORY	Initial Cost
	(2025 \$)
Civil / Structural (basins, buildings)	\$ 10,000,000
Rapid Mixers + VFD's (4 x 10 MGD)	\$ 276,000
Lime storage silo + slakers/feeders	\$ 2,600,000
Conventinal clarifiers/ oxidation (4)	\$ 24,000,000
Lamella plate settler packs (4)	\$ 3,200,000
Dual-media filters (4) + underdrains	\$ 24,000,000
Backwash and air-scour blowers	\$ 1,600,000
Instrumentation & SCADA	\$ 3,800,000
Electrical / MCC / Transformers	\$ 6,800,000
Painting & Coatings	\$ 1,400,000
SUBTOTAL ESTIMATED CAPITAL	\$ 77,676,000

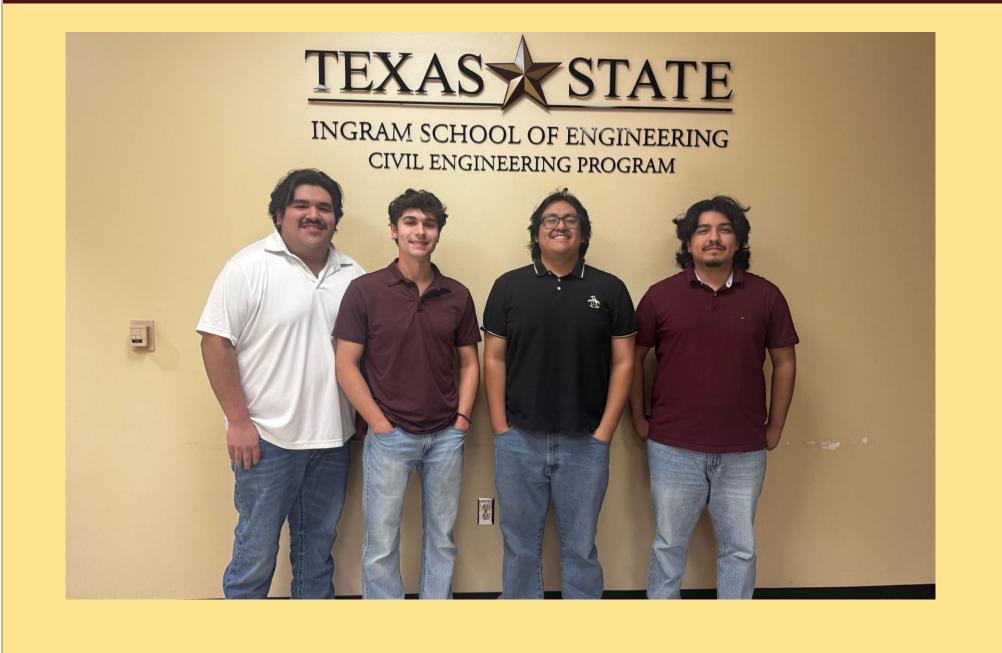
CLEAR WATER, CLEAN FUTURE

Life Cycle Costs

Table 4. Alternative 1 Net Present Value

COST CATEGORY		(2025 \$)	
Capital Costs	\$	54,576,000	
Life-Cycle Costs	\$	80,070,000	
Discount Rate (%)		4	
TOTAL 30-YEAR LIFE-CYCLE NPV	\$	134,646,000	

Table 5. Alternative 2 Net Present Value


COST CATEGORY	(2025 \$)	
Capital Costs	\$ 77,676,000	
Life-Cycle Costs	\$ 80,010,000	
Discount Rate (%)	4	
TOTAL 30-YEAR LIFE-CYCLE NPV	\$ 157,686,000	

Sustainability Evaluation

Credit Category	Applicable	Submitted	Percentage
Quality of Life	170	23	14%
Leadership	182	48	26%
Resource Allocation	188	82	44%
Natural World	154	39	25%
Climate and Resilience	190	58	31%
Total Points/%	884	250	28%

Using the Envision Sustainability Framework, the project earned a total percentage of 28% of the possible points. This earned a verified level in the framework.

Group Photo

